A or B... I mean when lava is poured out to the surface, heat and soilica content may play a role... That's what I think sorry :(
The ship floats in water due to the buoyancy Fb that is given by the equation:
Fb=ρgV, where ρ is the density of the liquid, g=9.81 m/s² is the acceleration of the force of gravity and V is volume of the displaced liquid.
The density of fresh water is ρ₁=1000 kg/m³.
The density of salt water is in average ρ₂=1025 kg/m³.
To compare the volumes of liquids that are displaced by the ship we can take the ratio of buoyancy of salt water Fb₂ and the buoyancy of fresh water Fb₁.
The gravity force of the ship Fg=mg, where m is the mass of the ship and g=9.81 m/s², is equal to the force of buoyancy Fb₁ and Fb₂ because the mass of the ship doesn't change:
Fg=Fb₁ and Fg=Fb₂. This means Fb₁=Fb₂.
Now we can write:
Fb₂/Fb₁=(ρ₂gV₂)/(ρ₁gV₁), since Fb₁=Fb₂, they cancel out:
1/1=1=(ρ₂gV₂)/(ρ₁gV₁), g also cancels out:
(ρ₂V₂)/(ρ₁V₁)=1, now we can input ρ₁=1000 kg/m³ and ρ₂=1025 kg/m³
(1025V₂)/(1000V₁)=1
1.025(V₂/V₁)=1
V₂/V₁=1/1.025=0.9756, we multiply by V₁
V₂=0.9756V₁
Volume of salt water V₂ displaced by the ship is smaller than the volume of sweet water V₁ because the force of buoyancy of salt water is greater than the force of fresh water because salt water is more dense than fresh water.
Radioactive decay is given by:
N = No x e^(-λt)
We know that N/No has to be 0.05
λ = 0.15
0.05 = e^(-0.15t)
t = ln(0.05)/(-0.15)
t = 19.97 days
Answer:
(a)2.7 m/s
(b) 5.52 m/s
Explanation:
The total of the system would be conserved as no external force is acting on it.
Initial momentum = final momentum
⇒(4.30 g × 943 m/s) + (730 g × 0) = (4.30 g × 484 m/s) + (730 g × v)
⇒ 730 ×v = (4054.9 - 2081.2) =1973.7
⇒v=2.7 m/s
Thus, the resulting speed of the block is 2.7 m/s.
(b) since, the momentum is conserved, the speed of the bullet-block center of mass would be constant.
Thus, the speed of the bullet-block center of mass is 5.52 m/s.