Answer:
2 m/s^2
Explanation:
a = v^2/r
a = (10m/s)^2 / 50m
a = 2 m/s^2
Leave a like and mark brainliest if this helped
Leave a like and mark brainliest if this helped
Answer: The observing friend will the swimmer moving at a speed of 0.25 m/s.
Explanation:
- Let <em>S</em> be the speed of the swimmer, given as 1.25 m/s
- Let
be the speed of the river's current given as 1.00 m/s.
- Note that this speed is the magnitude of the velocity which is a vector quantity.
- The direction of the swimmer is upstream.
Hence the resultant velocity is given as,
= S — S 0
= 1.25 — 1
= 0.25 m/s.
Therefore, the observing friend will see the swimmer moving at a speed of 0.25 m/s due to resistance produced by the current of the river.
Answer:
v = 8.57 m/s
Explanation:
As we know that the wagon is pulled up by string system
So the net force on the wagon along the inclined is due to tension in the rope and component of weight along the inclined plane
So as per work energy theorem we know that
work done by tension force + work done by force of gravity = change in kinetic energy

so we have


m = 38.2 kg
d = 85.4 m
so now we have


Explanation :
Static friction is the frictional force between two objects that are at rest. While sliding friction is the frictional force between two objects in contact and are sliding w.r.t each other.
Static friction is usually greater than sliding friction because in static friction the contact forces is more and the interlocking between objects is tight as compared to sliding friction.