Answer:
E = 12640.78 N/C
Explanation:
In order to calculate the electric field you can use the Gaussian theorem.
Thus, you have:
ФE: electric flux trough the Gaussian surface
Q: net charge inside the Gaussian surface
εo: dielectric permittivity of vacuum = 8.85*10^-12 C^2/Nm^2
If you take the Gaussian surface as a spherical surface, with radius r, the electric field is parallel to the surface anywhere. Then, you have:
r can be taken as the distance in which you want to calculate the electric field, that is, 0.795m
Next, you replace the values of the parameters in the last expression, by taking into account that the net charge inside the Gaussian surface is:
Finally, you obtain for E:
hence, the electric field at 0.795m from the center of the spherical shell is 12640.78 N/C
Answer:
Δd =
Explanation:
As , when the car is making full stop, . . Therefore,
Apply the same formula above, with and , and the car is starting from 0 speed, we have
As . After , the car would have traveled a distance of
Hence
As we can simplify
After t time, the train would have traveled a distance of
Therefore, Δd would be
Answer:
The quantity of motion is the measure of the same, arise from the velocity and quantity of matter conjointly. In other words, rather than defining the quantity of motion of a given object as simply the kinematic velocity v of the object, he defined it as the product mv, where m is the mass of the object.
Explanation:
Below is the solution:
Heat soda=heat melon
<span>m1*cp1*(t-t1)=m2*cp2*(t2-t); cp2=cpwater </span>
<span>12*0.35*3800*(t-5)=6.5*4200*(27-t) </span>
<span>15960(t-5)=27300(27-t) </span>
<span>15960t-136500=737100-27300t </span>
<span>43260t=873600 </span>
<span>t=873600/43260 </span>
<span>t=20.19 deg celcius</span>