Answer:
A point on the outside rim will travel 157.2 meters during 30 seconds of rotation.
Explanation:
We can find the distance with the following equation since the acceleration is cero (the disk rotates at a constant rate):
Where:
v: is the tangential speed of the disk
t: is the time = 30 s
The tangential speed can be found as follows:
Where:
ω: is the angular speed = 100 rpm
r: is the radius = 50 cm = 0.50 m
Now, the distance traveled by the disk is:
Therefore, a point on the outside rim will travel 157.2 meters during 30 seconds of rotation.
I hope it helps you!
As long as it sits on the shelf, its potential energy
relative to the floor is . . .
Potential energy = (mass) x (gravity) x (height) =
(3 kg) x (9.8 m/s²) x (0.8m) = <u>23.52 joules</u> .
If it falls from the shelf and lands on the floor, then it has exactly that
same amount of energy when it hits the floor, only now the 23.52 joules
has changed to kinetic energy.
Kinetic energy = (1/2) x (mass) x (speed)²
23.52 joules = (1/2) x (3 kg) x (speed)²
Divide each side by 1.5 kg : 23.52 m²/s² = speed²
Take the square root of each side: speed = √(23.52 m²/s²) = <em>4.85 m/s </em> (rounded)
Answer:
60 000 N
Explanation:
1 pa = 1 N/m^2
you have 300 000 of these = 300 000 N /m^2
but only an area of .2 m^2
300 000 N / m^2 * .2 m^2 = 60 000 N
Answer:
Water is not able to be used as a thermometer liquid because of its higher freezing point and lower boiling point than the other liquids in general. If water is used in a thermometer, it will start phase variation at 0∘C and 100∘C. This will not help in measuring temperature, beyond this range.
Explanation:
plzzzzzzz Mark my answer in brainlist