Answer:
0.084 M
Explanation:
Using the Henderson-Hasselbalch equation for a buffer ( a buffer is solution contain a weak acid and it conjugate base; the solution resist change in pH)
pH = pKa + log ( base/acid)
4.9 - 4.76 =log ( base / acid)
10^0.14 = ( base / acid)
1.38 = (base / acid)
since there is 0.2 M in the buffer solution
the concentration of acid =
× 0.2 = 0.084 M
Lowery-Bronsted theory is applied here. Acc. to this theory Base accepts protons and Acids donate proton.
Part 1:
Aniline is less basic than ethylamine because the lone pair on nitrogen (which accepts proton) is not localized. It resonates throughout the conjugated system of phenyl ring. Hence due to unavailability of electrons for accepting proton it is less basic compare to ethylamine. In ethyl amine the lone pair of electron is localized and available to abstract proton.
Part 2:
In this case the alkyl groups attached to -NH₂ (in ethylamine) and -O⁻ (in ethoxide are same (i.e. CH₃-CH₂-). Ethoxide is more basic than ethylamine because ethoxide is a conjugate base of ethanol (pKa value of ethanol = 15.9 very weak acid) and the conjugate base of weak acid is always a strong base. Secondly, the oxygen atom more Electronegative than Nitrogen atom can attract more electron cloud from alkyl group as compared to Nitrogen in ethylamine. Hence, oxygen in ethoxide attains greater electron cloud than the nitrogen in ethylamine. Therefore, it is more basic than ethylamine.
Answer:
The mass of coke needed to react completely with 1.0 ton of copper(II) oxide is 0.794 Ton.
Explanation:

1 Ton = 907185 grams
Mass of copper oxide = 1.0 Ton = 907185 grams
Moles of copper oxide =
According to reaction, 2 moles of copper oxide reacts with 1 mole of carbon.
Then 11403.95 moles of copper oxide will react with:
of carbon
Mass of 5,701.98 moles of carbon:

Mass of coke = x
Mass of carbon = 68,423.75 g
Percentage of carbon in coke = 95%


The mass of coke needed to react completely with 1.0 ton of copper(II) oxide is 0.794 Ton.
Answer : Option 1) nuclei of
and nuclei of
only.
Explanation : Radiation is spontaneously emitted from nuclei of
because this isotope of hydrogen is highly radioactive as compared to other isotopes of hydrogen namely; nuclei of
and nuclei of
.
They have much stable nucleus as compared to nuclei of
.
The more it is unstable the more radiations will be emitted from its nucleus.
Answer:
47.01 g/mol is molar mass