Frequency is measured in units of reciprocal time.
Period is measured in units of time.
Phase is a number without units that represents a fraction of a wave.
None of these is measured in meters, so none of them can be the answer.
It must be either amplitude or wavelength.
Amplitude is a quantity that's measured at one or two points in the same wave.
The question is talking about points on consecutive waves.
<em>Wavelength is</em> the only choice left. That must be it.
v = average speed of movement of the Southwest Indian Ridge = 20 mm/year
d = distance moved by the Southwest Indian Ridge = 100 mm
t = number of years required to move distance "d"
distance traveled is given as
d = v t
inserting the above values in the formula
100 mm = (20 mm/year) t
dividing both side by 20 mm/year
t = 100 mm/(20 mm/year)
t = 5 years
A big part of the reason that mirrors are seldom if ever used to generate
electricity is the simple fact that there is no way to generate electricity using
mirrors. They are as useless for the purpose as smoke is, although there are
those who have used both items simultaneously to create the impression that
they have succeeded in that attempt.
Answer:

Explanation:
= Velocity of one lump = 
= Velocity of the other lump = 
m = Mass of each lump = 
The collision is perfectly inelastic as the lumps stick to each other so we have the relation

The velocity of the stuck-together lump just after the collision is
.
Answer: Option (b) is the correct answer.
Explanation:
Since, there is a negative charge present on the ball and a positive charge present on the rod. So, when the negatively charged metal ball will come in contact with the rod then positive charges from rod get conducted towards the metal ball.
Hence, the rod gets neutralized. But towards the metal ball there is a continuous supply of negative charges. Therefore, after the neutralization of positive charge from the rod there will be flow of negative charges from the metal ball towards the rod.
Thus, we can conclude that negative charge spread evenly on both ends.