It would be Sulfur Dioxide.
Like CO2. C is the Carbon and O2 is Dioxide and it equals Carbon Dioxide.
I hope this is a successful answer.
1) boiling points increase as molecular weight increase and vice versa. This is due to the increase in van der waals forces between molecules.
2) branching decreases the melting and boiling i.e increase in branching decrease boiling point and melting point. This is due to the fact that there are less point of contact between neighbouring molecules, so molecules are farther apart from each other, which means weaker van der waals(London forces) less energy is required to overcome these force of attraction.
3) In homolytic fission each of the fragment retain one of the bonded electron and radicals are made if the molecule is neutral. In heterolytic fission one fragment gets both bonding electron.
The energy for the heterolytic fission is higher because energy is not only needed to break the covalent bond but also to overcome the force of attraction between oppositely charged ions formed.
Answer:
d. 60.8 L
Explanation:
Step 1: Given data
- Heat absorbed (Q): 53.1 J
- External pressure (P): 0.677 atm
- Final volume (V2): 63.2 L
- Change in the internal energy (ΔU): -108.3 J
Step 2: Calculate the work (W) done by the system
We will use the following expression.
ΔU = Q + W
W = ΔU - Q
W = -108.3 J - 53.1 J = -161.4 J
Step 3: Convert W to atm.L
We will use the conversion factor 1 atm.L = 101.325 J.
-161.4 J × 1 atm.L/101.325 J = -1.593 atm.L
Step 4: Calculate the initial volume
First, we will use the following expression.
W = - P × ΔV
ΔV = - W / P
ΔV = - 1.593 atm.L / 0.677 atm = 2.35 L
The initial volume is:
V2 = V1 + ΔV
V1 = V2 - ΔV
V1 = 63.2 L - 2.35 L = 60.8 L
One correct thging is that there are the same amount of positive and negative atoms