Answer with explanation:
We are given that
Mass of ball,
75 g=
1 kg=1000 g
Height,

Horizontal velocity,
Mass of plate
a.Initial velocity of plate,
Velocity before impact=
Where 
Velocity after impact,
According to law of conservation of momentum

Substitute the values



Velocity of plate=1.69 m/s
b.Initial energy=
Final energy=
Final energy=
Energy lost due to compact=Initial energy-final energy=1.326-1.162=0.164 J
Answer: C
Both Technicians A and B
Explanation:
Only a DOT-approved flasher unit should be used for turn signals. And a parallel (variable-load) flasher will function for turn signal usage, although it will not warn the driver if a bulb burns out.
The weight should be shared between the two string equally. Therefore, tension in each string, T is;
T = 120 N/2 = 60 N
Answer:
The greatest speed of the car is 19.36m/s
Explanation:
The maximum speed the car will attain without skidding is given by:
F= uN = umg ...eq1
But F = mv^2/r
mv^2/r = umg
Dividing both sides by m, leaves you with:
V= Sqrt(ugr)
Where u = coefficient of static friction
g = acceleration due to gravity
r = raduis
Given:
U = 0.82
r=0.82
g= 9.8m/s
V = Sqrt(0.82 × 9.8 × 45)
V = Sqrt(374.85)
V = 19.36m/s
Answer:
"A turbine takes the kinetic energy of a moving fluid, air in this case, and converts it to a rotary motion. As wind moves past the blades of a wind turbine, it moves or rotates the blades. These blades turn a generator."