Given,
Current (I) = 0.50A
Voltage (V) = 120 volts
Resistance (R) =?
We know that:-
Voltage (V) = Current (I) x Resistance (R)
→Resistance (R) = Voltage (V) / Current (I)
= 120/0.50
= 24Ω
∴ Resistance (R) = 24Ω
Isothermal Work = PVln(v₂/v₁)
PV = nRT = 2 mole * 8.314 J/ (k.mol) * 330 k = 5487.24 J
Isothermal Work = PVln(v₂/v₁) v₂ = ? v₁ = 19L,
1.7 kJ = (5487.24)In(v₂/19)
1700 = (5487.24)In(v₂/19)
In(v₂/19) = (1700/5487.24) = 0.3098
In(v₂/19) = 0.3098
(v₂/19) =

v₂ = 19*

v₂ = 25.8999
v₂ ≈ 26 L Option b.
Answer:
The mass of the object is 5.045 lbm.
Explanation:
Given;
kinetic energy of the object, K.E = 1558.71 ft.lbf
velocity of the object, V = 141 ft/s
The kinetic energy of the object is calculated as;


Therefore, the mass of the object is 5.045 lbm.
Answer:

Explanation:
The artificial gravity generated by the rotating space station is the same centripetal acceleration due to the rotational motion of the station, which is given by:

Here, r is the radius and v is the tangential speed, which is given by:

Here
is the angular velocity, we replace (2) in (1):

Recall that
.
Solving for
:
