Answer:
A real emf device has an internal resistance, but an ideal emf device does not.
Answer:
V = 6.65 [volt]
Explanation:
First, we must calculate the power by means of the following equation, where the voltage is related to the energy produced or consumed in a given time.
![P=E/t\\P = 40/30\\P = 1.33[s]](https://tex.z-dn.net/?f=P%3DE%2Ft%5C%5CP%20%3D%2040%2F30%5C%5CP%20%3D%201.33%5Bs%5D)
Using the power we can calculate the voltage, by means of the following equation that relates the voltage to the current.

where:
V = voltage [Volts]
I = current = 200 [mA] = 0.2 [A]
![V = 1.33/0.2\\V = 6.65 [volt]](https://tex.z-dn.net/?f=V%20%3D%201.33%2F0.2%5C%5CV%20%3D%206.65%20%5Bvolt%5D)
I do not know of the following in your class, but the wall is still and non-moving, while the hockey player is pushing off of it, as stated. So, this is not inertia, for a fact, because the wall is not moving towards the hockey player.
Answer:
<em>The sprinter traveled a distance of 7.5 m</em>
Explanation:
<u>Motion With Constant Acceleration
</u>
It's a type of motion in which the rate of change of the velocity of an object is constant.
The equation that rules the change of velocities is:
![v_f=v_o+at\qquad\qquad [1]](https://tex.z-dn.net/?f=v_f%3Dv_o%2Bat%5Cqquad%5Cqquad%20%5B1%5D)
Where:
a = acceleration
vo = initial speed
vf = final speed
t = time
The distance traveled by the object is given by:
![\displaystyle x=v_o.t+\frac{a.t^2}{2}\qquad\qquad [2]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20x%3Dv_o.t%2B%5Cfrac%7Ba.t%5E2%7D%7B2%7D%5Cqquad%5Cqquad%20%5B2%5D)
Using the equation [1] we can solve for a:

The sprinter travels from rest (vo=0) to vf=7.5 m/s in t=2 s. Computing the acceleration:


Now calculate the distance:


The sprinter traveled a distance of 7.5 m
Answer:
1) ELECTRO MAGNET
2) B
3) -AMOUNT OF ELECTRICITY OF THE POWER SOURCE
- AMOUNT OF COIL WRAPPED UP TO THE NAIK
-CONDUCTIVITY OF THE MEDIUM