1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
user100 [1]
3 years ago
6

ILL BRAINLIST!!

Chemistry
1 answer:
FrozenT [24]3 years ago
8 0

Answer:

In 1859, European rabbits (Oryctolagus cuniculus) were introduced into the Australian wild so that they could be hunted. ... These rabbits are extremely adaptive, which has played a role in their spread across the Australian continent. All the rabbits need is soil that is fit to burrow and short grasses to graze on.

You might be interested in
A mixture of 75 mole% methane and 25 mole% hydrogen is burned with 25% excess air. Fractional conversions of 90% of the methane
son4ous [18]

Solution :

Consider a mixture of methane and hydrogen.

Take the basis as 100 moles of the mixture.

The mixture contains 75% of methane and 25% of hydrogen by mole and it is burned with 25% in excess air.

Moles of methane = 0.75 x 100

Moles of hydrogen = 0.25 x 100

The chemical reactions involved during the reaction are :

$CH_4+2O_2 \rightarrow CO_2 + 2H_2O$

$CH_4+1.5O_2 \rightarrow CO+2H_2O$

$H_2+0.5O_2 \rightarrow H_2O$

The fractional conversion of methane is 90%

Number of moles of methane burned during the reaction is = 0.9 x 75

                                                                                                   = 67.5

Moles of methane leaving = initial moles of methane - moles of methane burned

                                           = 75 - 67.5

                                           = 7.5 moles

Fractional conversion of hydrogen is 85%

The number of moles of hydrogen burned during the reaction is = 0.85 x 25

                                                                                                   = 21.25

Moles of hydrogen leaving = initial moles of hydrogen - moles of hydrogen burned

                                           = 25 - 21.25

                                           = 3.75 moles

Methane undergoing complete combustion is 95%.

$CO_2$ formed is = 0.95 x 67.5

                       = 64.125 moles

$CO$ formed is = 0.05 x 67.5

                       = 3.375 moles

Oxygen required for the reaction is as follows :

From reaction 1, 1 mole of the methane requires 2 moles of oxygen for the complete combustion.

Hence, oxygen required is = 2 x 75

                                            = 150 moles

From reaction 3, 1 mole of the hydrogen requires 0.5 moles of oxygen for the complete combustion.

Hence, oxygen required is = 0.5 x 25

                                            = 12.5 moles

Therefore, total oxygen is = 150 + 12.5 = 162.5 moles

Air is 25% excess.

SO, total oxygen supply = 162.5 x 1.25 = 203.125 moles

Amount of nitrogen = $203.125 \times \frac{0.79}{0.21} $

                                = 764.136 moles

Total oxygen consumed = oxygen consumed in reaction 1 + oxygen consumed in reaction 2 + oxygen consumed in reaction 3

Oxygen consumed in reaction 1 :

1 mole of methane requires 2 moles of oxygen for complete combustion

 = 2 x 64.125

 = 128.25 moles

1 mole of methane requires 1.5 moles of oxygen for partial combustion

= 1.5 x 3.375

= 5.0625 moles

From reaction 3, 1 mole of hydrogen requires 0.5 moles of oxygen

= 0.5 x 21.25

= 10.625 moles.

Total oxygen consumed = 128.25 + 5.0625 + 10.625

                                        = 143.9375 moles

Total amount of steam = amount of steam in reaction 1 + amount of steam in reaction 2 + amount of steam in reaction 3

Amount of steam in reaction 1 = 2 x 64.125 = 128.25 moles

Amount of steam in reaction 2 = 2 x 3.375 = 6.75 moles

Amount of steam in reaction 3  = 21.25 moles

Total amount of steam = 128.25 + 6.75 + 21.25

                                     = 156.25 moles

The composition of stack gases are as follows :

Number of moles of carbon dioxide = 64.125 moles

Number of moles of carbon dioxide = 3.375 moles

Number of moles of methane = 7.5 moles

Number of moles of steam = 156.25 moles

Number of moles of nitrogen = 764.136 moles

Number of moles of unused oxygen = 59.1875 moles

Number of moles of unused hydrogen = 3.75 moles

Total number of moles of stack  gas

= 64.125+3.375+7.5+156.25+764.136+59.1875+3.75

= 1058.32 moles

Concentration of carbon monoxide in the stack gases is

$=\frac{3.375}{1058.32} \times 10^6$

= 3189 ppm

b).  The amount of carbon monoxide in the stack gas can be decreased by increasing the amount of the excess air. As the amount of the excess air increases, the amount of the unused oxygen and nitrogen in the stack gases will increase and the concentration of CO will decrease in the stack gas.  

6 0
3 years ago
I added and multiplied i still don't know
hjlf

Answer:

it'a answer number 2

Explanation: you divide the mass by volume and 32.2 divided by 4 is 8.05

8 0
3 years ago
How many grans of NaoH Are needed to neutralize grans of H2So4​
user100 [1]

Answer :]

to convert from g NaOH to mol NaOH. = 1.48 g NaOH are needed to neutralize the acid.

5 0
2 years ago
Using only the periodic table, rank the elements in each set in order of increasing size: (a) Se, Br, Cl; (b) I, Xe, Ba.
mezya [45]

Answer:

A. Cl, Se, Br

B. I, Xe, Ba

Explanation:

4 0
3 years ago
During a storm, a tree fell over into a river. What might happen to this tree?
mina [271]
Break down in to tiny prices as the water hit the tree
6 0
3 years ago
Other questions:
  • What is the molality of a solution containing 125 grams of iodine (I2) and 750 grams of CCl4? A. 1.2 m. . B. 6.57 m. . C. 0.657
    14·1 answer
  • An ethylene glycol solution contains 16.2 g of ethylene glycol (c2h6o2) in 85.4 ml of water. calculate the boiling point of the
    6·1 answer
  • In two or more complete sentences explain how to balance the chemical equation, KClO3 ⟶ KCl + O2 and include all steps. Write yo
    15·1 answer
  • Determine the amount of moles in 6.36x10^25 molecules of H2O
    13·1 answer
  • what is the scientific name for the layer of gas that surrounds the earth A. hydrosphere B. biosphere C. atmosphere D. lithosphe
    14·2 answers
  • Calculate wavelength in metres and nanometers of green light whose frequency is 5.7 x 10^14 Hz.
    5·1 answer
  • The chemical reaction shown above takes place in a closed system. What is true about the system while the reaction occurs? A. Th
    11·1 answer
  • A thermogram is an image produced
    5·1 answer
  • Stuck at this. Can anyone help me pls? ​
    15·1 answer
  • Arrange the following groups of substances in order, highest boiling point first (i) He, Ne and Ar (ii) Bromomethane, Fluorometh
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!