I choose the option A.
The electron absorbs energy from specific wavelength then moving from a lower energy orbital to a higher energy orbital.
Answer:
kJ/mol
Explanation: <u>Enthalpy</u> <u>Change</u> is the amount of energy in a reaction - absorption or release - at a constant pressure. So, <u>Standard</u> <u>Enthalpy</u> <u>of</u> <u>Formation</u> is how much energy is necessary to form a substance.
The standard enthalpy of formation of HCl is calculated as:

→ 
Standard Enthalpy of formation for the other compounds are:
Calcium Hydroxide:
-1002.82 kJ/mol
Calcium chloride:
-795.8 kJ/mol
Water:
-285.83 kJ/mol
Enthalpy is given per mol, which means we have to multiply by the mols in the balanced equation.
Calculating:
![-17.2=[-795.8+2(285.85)]-[-1002.82+2\Delta H]](https://tex.z-dn.net/?f=-17.2%3D%5B-795.8%2B2%28285.85%29%5D-%5B-1002.82%2B2%5CDelta%20H%5D)



So, the standard enthalpy of formation of HCl is -173.72 kJ/mol
<span>Tertiary alcohols are the type of alcohols that will undergo acid-catalyzed dehydration under the mildest conditions. Types of tertiary alcohols are 2-methylpropan-2-ol and 2-methylbutan-2-ol. Other types of alcohols are referred to as primary alcohols and secondary alcohols.</span>
First one is true second one is False
Answer:
2Mg(s) +O₂(g) → 2MgO(s)
Explanation:
Mg(s) +O₂(g) → MgO(s)
When a chemical equation is balanced, the number of atoms of each element is equal on both sides of the arrow. We usually balance O and H last.
In this case, the number of Mg atoms is equal on both sides. Thus, let's move on to balance the O atoms. On the left side, there are 2 O atoms, while there is only 1 O atom on the left side. Thus, write a '2' in front of MgO.
Mg(s) +O₂(g) → 2MgO(s)
Now, the number of Mg atoms is not equal. Write a '2' in front of Mg to balance it.
2Mg(s) +O₂(g) → 2MgO(s)
The equation is now balanced with 2 Mg atoms and 2 O atoms on each side.