The Mass of oxygen in isolated sample is 8.6 g
<h3>What is the
Law of Constant composition?</h3>
The law of constant composition states that pure samples of the same compound contain the same element in the same ratio by mass irrespective of the source from which the compound is obtained.
Considering the given ascorbic acid samples:
Laboratory sample contains 1.50 gg of carbon and 2.00 gg of oxygen
mass ratio of oxygen to carbon is 2 : 1.5
Isolated sample will contain 2/1.5 * 6.45 g of oxygen.
Mass of oxygen in isolated sample = 8.6 g
In conclusion, the mass of oxygen is determined from the mass ratio of oxygen and carbon in the compound.
Learn more about the Law of Constant composition at: brainly.com/question/1557481
#SPJ1
Note that the complete question is given below:
A sample of ascorbic acid (vitamin C) is synthesized in the laboratory. It contains 1.50 g of carbon and 2.00 g of oxygen. Another sample of ascorbic acid isolated from citrus fruits contains 6.45 gg of carbon. According to the law of constant composition, how many grams of oxygen does this isolated sample contain?
Express the answer in grams to three significant figures.
8.47 g
No, but. It will seperate into two different layers based on density
Answer:
Explanation:
Dalton's atomic theory proposed that all matter was composed of atoms, indivisible and indestructible building blocks. While all atoms of an element were identical, different elements had atoms of differing size and mass.
In 1897, J.J. Thomson discovered the electron by experimenting with a Crookes, or cathode ray, tube. He demonstrated that cathode rays were negatively charged. In addition, he also studied positively charged particles in neon gas.
Rutherford overturned Thomson's model in 1911 with his well-known gold foil experiment in which he demonstrated that the atom has a tiny and heavy nucleus. Rutherford designed an experiment to use the alpha particles emitted by a radioactive element as probes to the unseen world of atomic structure.
The Bohr model shows the atom as a small, positively charged nucleus surrounded by orbiting electrons. Bohr was the first to discover that electrons travel in separate orbits around the nucleus and that the number of electrons in the outer orbit determines the properties of an element.
Answer:
True
Explanation:
The volume of water displaced by an object completely submerged is its actual volume. It implies that in the container the object create a space of size for itself which is the volume of the object. This approach is used in calculating the density of many irregular solids from their measured masses.