Answer:
An Orbital is best described as the volume of space in which electrons are most often found
Explanation:
As we know atom consists of sub-particles commonly known as protons, neutrons and electrons. The outer space around the nucleus where the probability of finding electrons is maximum is known as orbital. As the electrons are not precisely ordered around the nucleus hence it is not easy to tell the exact position of an electron.
Hence, four quantum numbers are used to locate the position of electrons around the nucleus.
i) Principle Quantum Number:
This number explains the main energy level which tend to increase in energy as the distance of electrons from nucleus are increased. Principle Quantum Numbers are integer number ranging from one to infinity. Hence, increase in this quantum number results in increase of the size of orbital.
ii) Azimuthal Quantum Number:
This Quantum Number explains the direction of particular orbital in 3-dimensional space. Also it is responsible for the shape of an orbital.
iii) Magnetic Quantum Number:
This Quantum Number also tells the direction of orbital in 3D space with respect to x, y and z axis.
iv) Spin Quantum Number:
This Quantum Number tells about the spin direction of an electron about its axis which may be clockwise or anticlockwise.
6.11% w/v of Cu2+ implies that 6.11 g of Cu2+ is present in 100 ml of the solution
therefore, 250 ml of the solution would have: 250 ml * 6.11 g/100 ml = 15.275 g
# moles of Cu2+ = 15.275 g/63.546 g mole-1 = 0.2404 moles
1 mole of CuCl2 contain 1 mole of Cu2+ ion
Hence, 0.2404 moles of Cu2+ would correspond to 0.2404 moles of CuCl2
Molar mass of CuCl2 = 134.452 g/mole
The mass of CuCl2 required = 0.2404 moles * 134.452 g/mole = 32.32 grams
Answer:
Dark matter makes up 85% of the mass of the universe. Dark matter is not directly observable because it doesn't interact with any electromagnetic wave. In the development of the universe, without dark matter, the universe will not function, move or rotate as it does now (this speculation led to the quest to find the anomaly of mass and energy in the known universe, eventually leading to the idealization of dark matter) and will not have enough gravitational force to hold it together. After the big bang,<em> the presence of dark matter and energy ensured that the newly formed universe didn't just float away, rather, it provided enough gravitational force to hold the universe while still allowing it to expand sufficiently</em>.
The development of the universe would have been different without the universe in the sense that the young universe won't have enough mass to hold it together, and the universe would have simply floated apart. The behavior of the universe would have been different from what we observe now, and some physical laws that applies now will not apply to the universe.
Answer:
Molarity.
Explanation:
- The molarity (M) of a solution is defined as the no. of moles of solute that dissolved in 1.0 liter of the solution.
M = (mass / molar mass) of the solute (1000 / volume of the solution).
<em>So, the best measurement of concentration for describing the concentration of a solid solute dissolved in one liter of a liquid solution is Molarity.</em>
<u>Answer:</u> The concentration of solution is 0.342 M
<u>Explanation:</u>
To calculate the molarity of solution, we use the equation:

We are given:
Mass of solute (Sodium chloride) = 15 g
Molar mass of sodium chloride = 58.5 g/mol
Volume of solution = 750 mL
Putting values in above equation, we get:

Hence, the concentration of solution is 0.342 M