To me "Ma" mean in real life is either mama or Massachusttes.
Answer:
b) 338 N
Explanation: let m be the mass of the gymnast and a be the acceleration of the gymnast.
the force required to accelerate the gymnast is given by:
F = m×a
= (45.0)×(7.50)
= 337.5 N
Therefore, the force a trampoline has to apply is 138 N.
Answer:
3°C
Explanation:
We can that heat Q=m
dT
Where m is the mass
= specific heat capacity
dT = Temperature difference
here we have given m=625 g =.625 kg
specific heat of granite =0.79 J/(g-K) = 0.79 KJ/(kg-k)
=25°C
we have to find
we have also given Q=10.9 KJ
10.9=0.625×0.79×(25-
)
25-
=22
=3°C
The weight of the meterstick is:

and this weight is applied at the center of mass of the meterstick, so at x=0.50 m, therefore at a distance

from the pivot.
The torque generated by the weight of the meterstick around the pivot is:

To keep the system in equilibrium, the mass of 0.50 kg must generate an equal torque with opposite direction of rotation, so it must be located at a distance d2 somewhere between x=0 and x=0.40 m. The magnitude of the torque should be the same, 0.20 Nm, and so we have:

from which we find the value of d2:

So, the mass should be put at x=-0.04 m from the pivot, therefore at the x=36 cm mark.
Answer:
the electric field strength of this charge is two times the strength of the other charge
Explanation:
Using the relationship between electric field and the charge, which is inversely proportionality. Let the the magnitude of the first charge be Q and the respective electric field be E. It implies that;
E1/E2 = Q2/Q1
E2 = E1 x Q1/Q2
= E x Q/ (Q/2)
= 2E