1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ruslelena [56]
3 years ago
14

Find the volume of water displaced and position of center of buoyancy for a wooden block of width 2.5m and of depth 1.5m. When i

t floats horizontally, in water. The density of wooden block is 650 kg/m3 and its length óm
​
Engineering
1 answer:
Lostsunrise [7]3 years ago
4 0

Answer:

The mass density of a fluid is 980 kg/m3. ... If the specific gravity of a liquid is 0.79, determine its mass density and specific ... A wooden block of size 1m x 0.5m x 0.4m is floating in water with 0.4 m side ...

Explanation:

Credit to  sugantipandit7

https://brainly.in/question/43010943?tbs_match=3

You might be interested in
What happens to the duty cycle for a GMAW Gun when 75Ar/25COzgas
skad [1K]

So what happens is the host will not kill the y no se que hacer para no one can see it in

6 0
3 years ago
Outline the structure of an input-output model (including assumptions about supply and demand). What is an inverse matrix? Why i
pishuonlain [190]

Answer:

Explanation:

C.1 Input-Output Model

It is a formal model that divides the economy into 2 sectors and traces the flow of inter-industry purchases and sales. This model was developed by Wassily Leontief in 1951. In simpler terms, the inter-industry model is a quantitative economic model that defines how the output of one industry becomes the input of another industrial sector. It is an interdependent economic model where the output of one becomes the input of another. For Eg: The Agriculture sector produces output using the inputs from the manufacturing sector.

The 3 main elements are:

Concentrates on an economy which is in equilibrium

Deals with technical aspects of production

Based on empirical investigations and assumptions

Assumptions

2 sectors - " Inter industry sector" and "final sector"

Output of one industry is the input for another

No 2 goods are produced jointly. i.e each industry produces homogenous goods

Prices, factor suppliers and consumer demands are given

No external economies or diseconomies of production

Constant returns to scale

The combinations of inputs are employed in rigidly fixed proportions.

Structure of IO model

See image 1

Quadrant 1: Flow of products which are both produced and consumed in the process of production

Quadrant 2: Final demand for products of each producing industry.

Quadrant 3: Primary inputs to industries (raw materials)

Quadrant 4: Primary inputs to direct consumption (Eg: electricity)

The model can be used in the analysis of the labor market, forecast economic development of a nation and analyze economic developments of various regions.

Leontief inverse matrix shows the output rises in each sector due to a unit increase in final demand. Inverting the matrix is significant since it is a linear system of equations with unique solutions. Thus, the final demand vector for the required output can be found.

C.2 Linear programming problems

Linear programming problems are optimization problems in which objective function and the constraints are all linear. It is most useful in making the best use of scarce resources during complex decision makings.

Primal LP, Dual LP, and Interpretations

Primal linear programming: They can be viewed as a resource allocation model that seeks to maximize revenue under limited resources. Every linear program has associated with it a related linear program called dual program. The original problem in relation to its dual is termed as a primal problem. The objective function is a linear combination of n variables. There are m constraints that place an upper bound on a linear combination of the n variables The goal is to maximize the value of objective functions that are subject to the constraints. If the primal linear programming has finite optimal value, then the dual has finite optimal value, and the primal and dual have the same optimal value. If the optimal solution to the primal problem makes a constraint into a strict inequality, it implies that the corresponding dual variable must be 0. The revenue-maximizing problem is an example of a primal problem.

Dual Linear Programming: They represent the worth per unit of resource. The objective function is a linear combination of m values that are the limits in the m constraints from the primal problem. There are n dual constraints that place a lower bound on a linear combination of m dual variables. The optimal dual solution implies fair prices for associated resources. Stri=ong duality implies the Company’s maximum revenue from selling furniture = Entrepreneur’s minimum cost of purchasing resources, i.e company makes no profit. Cost minimizing problem is an example of dual problems

See image 2

n - economic activities

m - resources

cj - revenue per unit of activity j

4 0
3 years ago
Read 2 more answers
For a cylindrical annulus whose inner and outer surfaces are maintained at 30 ºC and 40 ºC, respectively, a heat flux sensor mea
miskamm [114]

Answer:

k=0.12\ln(r_2/r_1)\frac {W}{ m^{\circ} C}

where r_1 and r_2 be the inner radius, outer radius of the annalus.

Explanation:

Let r_1, r_2 and L be the inner radius, outer radius and length of the given annulus.

Temperatures at the inner surface, T_1=30^{\circ}C\\ and at the outer surface, T_2=40^{\circ}C.

Let q be the rate of heat transfer at the steady-state.

Given that, the heat flux at r=3cm=0.03m is

40 W/m^2.

\Rightarrow \frac{q}{(2\pi\times0.03\times L)}=40

\Rightarrow q=2.4\pi L \;W

This heat transfer is same for any radial position in the annalus.

Here, heat transfer is taking placfenly in radial direction, so this is case of one dimentional conduction, hence Fourier's law of conduction is applicable.

Now, according to Fourier's law:

q=-kA\frac{dT}{dr}\;\cdots(i)

where,

K=Thermal conductivity of the material.

T= temperature at any radial distance r.

A=Area through which heat transfer is taking place.

Here, A=2\pi rL\;\cdots(ii)

Variation of temperature w.r.t the radius of the annalus is

\frac {T-T_1}{T_2-T_1}=\frac{\ln(r/r_1)}{\ln(r_2/r_1)}

\Rightarrow \frac{dT}{dr}=\frac{T_2-T_1}{\ln(r_2/r_1)}\times \frac{1}{r}\;\cdots(iii)

Putting the values from the equations (ii) and (iii) in the equation (i), we have

q=\frac{2\pi kL(T_1-T_2)}{\LN(R_2/2_1)}

\Rightarrow k= \frac{q\ln(r_2/r_1)}{2\pi L(T_2-T_1)}

\Rightarrow k=\frac{(2.4\pi L)\ln(r_2/r_1)}{2\pi L(10)} [as q=2.4\pi L, and T_2-T_1=10 ^{\circ}C]

\Rightarrow k=0.12\ln(r_2/r_1)\frac {W}{ m^{\circ} C}

This is the required expression of k. By putting the value of inner and outer radii, the thermal conductivity of the material can be determined.

7 0
3 years ago
How do I get my son to do his work?
valentinak56 [21]

Answer:

Explanation:

Reward him if he does his homework/work

If he doesnt do his homework, take things that he loves off of him. and tell him if he does his homework/work he will get them things back

8 0
3 years ago
A cylinder fitted with a frictionless piston contains 2 kg of R-134a at 3.5 bar and 100 C. The cylinder is now cooled so that th
inna [77]

Answer:

The answer to the question is

The heat transferred in the process is -274.645 kJ

Explanation:

To solve the question, we list out the variables thus

R-134a = Tetrafluoroethane

Intitial Temperaturte t₁ = 100 °C

Initial pressure = 3.5 bar = 350 kPa

For closed system we have m₁ = m₂ = m

ΔU = m×(u₂ - u₁) = ₁Q₂ -₁W₂

For constant pressure process we have

Work done = W = \int\limits^a_b P \, dV  = P×ΔV = P × (V₂ - V₁) = P×m×(v₂ - v₁)

From the tables we have

State 1 we have h₁ = (490.48 +489.52)/2 = 490 kJ/kg

State 2 gives h₂ = 206.75 + 0.75 × 194.57= 352.6775 kJ/kg

Therefore Q₁₂ = m×(u₂ - u₁) + W₁₂ = m × (u₂ - u₁) + P×m×(v₂ - v₁)

= m×(h₂ - h₁) = 2.0 kg × (352.6775 kJ/kg - 490 kJ/kg) =-274.645 kJ

5 0
3 years ago
Other questions:
  • Water flows through two smooth pipes with the same diameter and length as shown below. ipe is twice that through the first-pipe.
    12·1 answer
  • Working with which of these systems requires a technician that has been certified in an EPA-approved course?
    11·1 answer
  • How are scientific discoveries used in engineering design?
    12·1 answer
  • Cryogenic liquid storage. Liquid oxygen is stored in a thin-walled spherical container, 96 cm in diameter, which is further encl
    10·1 answer
  • In a hydraulic system, a 100.-newton force is applied to a small piston with an area of 0.0020 m2. What pressure, in pascals, wi
    13·1 answer
  • Four subjects civil engineers need to study​
    12·1 answer
  • What is it that makes a battery rechargeable? How is it different from a regular battery?
    14·2 answers
  • Cold forging makes metal more workable than hot forging.<br> True<br> False
    11·2 answers
  • Lynx eat snowshoe hares, and snowshoes hears eat plants. Which term can be applied to the lynx in this food chain example? Prima
    10·1 answer
  • A high compression ratio may result in;
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!