Answer:
A. N₂(g) + 3H₂(g) -----> 2NH₃ exothermic
B. S(g) + O₂(g) --------> SO₂(g) exothermic
C. 2H₂O(g) --------> 2H₂(g) + O₂(g) endothermic
D. 2F(g) ---------> F₂(g) exothermic
Explanation:
The question says predict not calculate. So you have to use your chemistry knowledge, experience and intuition.
A. N₂(g) + 3H₂(g) -----> 2NH₃ is exothermic because the Haber process gives out energy
B. S(g) + O₂(g) --------> SO₂(g) is exothermic because it is a combustion. The majority, if not all, combustion give out energy.
C. 2H₂O(g) --------> 2H₂(g) + O₂(g) is endothermic because it is the reverse reaction of the combustion of hydrogen. If the reverse reaction is exothermic then the forward reaction is endothermic
D. 2F(g) ---------> F₂(g) is exothermic because the backward reaction is endothermic. Atomisation is always an endothermic reaction so the forward reaction is exothermic
<span>Molarity is expressed as
the number of moles of solute per volume of the solution. We calculate as follows:
2.80 g ( 1 mol / 56.11 g ) = 0.05 mol KOH
Molarity = 0.05 mol KOH / 750 mL ( 1 L / 1000 mL )
Molarity = 0.07 M
Hope this answers the question. Have a nice day.</span>
<span>A river can only carry a load if it has adequate energy. When the energy drops below a certain level, therefore, the load is dropped. In the Thalweg (the line of fastest flow), more load is carried, and this is also where the erosion occurs, adding more load. On the inside of a meander, for example, since the Thalweg is on the outside, the velocity on the inside is very low, and so deposition occurs. On the very inside, water merely trickles past. This is incapable of transporting load, so it deposits it until it is able to carry all of it.</span>