Answer:
d. it does all of that and even harms humans to some extent
let me know if its right
Heat required : 4.8 kJ
<h3>Further explanation
</h3>
The heat to change the phase can be formulated :
Q = mLf (melting/freezing)
Q = mLv (vaporization/condensation)
Lf=latent heat of fusion
Lv=latent heat of vaporization
The heat needed to raise the temperature
Q = m . c . Δt
1. heat to raise temperature from -20 °C to 0 °C

2. phase change(ice to water)

3. heat to raise temperature from 0 °C to 25 °C


Answer : This reaction is an exothermic reaction.
Explanation :
Endothermic reaction : It is defined as the chemical reaction in which the energy is absorbed from the surrounding.
In the endothermic reaction, the energy of reactant are less than the energy of product.
Exothermic reaction : It is defined as the chemical reaction in which the energy is released into the surrounding.
In the exothermic reaction, the energy of reactant are more than the energy of product.
Enthalpy of reaction : It is the difference between the energy of product and the reactant. It is represented as
.
The balanced chemical reaction will be:

From the reaction we conclude that the heat energy is released during the reaction that means this reaction is an exothermic reaction.
Hence, the reaction is an exothermic reaction.
the answer is 133
because thats how the water is
As can be seen in the attached image, α-pyrone has a highly electrophilic carbon atom, since it is attached to two oxygen atoms that are electronegative and subtract electrical charge from the carbon, leaving it with a <u>positive partial charge</u>. By virtue of the above, <u>the bromine atoms, which have an important electron density that makes them good nucleophiles, will be attracted to the aforementioned carbon due to their positive charge</u>, thus favoring the substitution product to a greater extent than that of addition.