They are called isotopes.
Isotopes have the same number of electrons and protons in their unionized state. They differ in the number of neutrons. The first and simplest example is hydrogen.
The most common hydrogen has
1 proton
1 electron and
0 neutrons
It has 2 cousins
1 proton
1 electron
1 neutron
And
1 proton
1 electron
2 neutrons.
Most elements have some differences in the number of neutrons present in their nuclei. Cesium and Xenon have the most number of isotopes. Each has 36. You wonder how the atoms are held together.
Answer: The molality of solution is 17.6 mole/kg
Explanation:
Molality of a solution is defined as the number of moles of solute dissolved per kg of the solvent.
where,
n = moles of solute
= weight of solvent in kg
moles of acetone (solute) = 0.241
moles of water (solvent )= (1-0.241) = 0.759
mass of water (solvent )=
Now put all the given values in the formula of molality, we get
Therefore, the molality of solution is 17.6 mole/kg
Answer:
Explanation:
The answer is 32°F or 0° Celsius.
Hope it helped you.
Answer:
252.68 K or -20.46 °C
Explanation:
According to Gay-Lussac's Law, "Pressure and Temperature at given volume are directly proportional to each other".
Mathematically,
P₁ / T₁ = P₂ / T₂ ---- (1)
Data Given:
P₁ = 30.7 kPa
T₁ = 0.00 °C = 273.15 K
P₂ = 28.4 kPa
T₂ = <u>???</u>
Solving equation for T₂,
T₂ = P₂ T₁ / P₁
Putting values,
T₂ = 28.4 kPa × 273.15 K / 30.7 kPa
T₂ = 252.68 K or -20.46 °C
Answer:
36.2 K
Explanation:
Step 1: Given data
- Initial pressure of the gas (P₁): 8.6 atm
- Initial temperature of the gas (T₁): 38°C
- Final pressure of the gas (P₂): 1.0 atm (standard pressure)
- Final temperature of the gas (T₂): ?
Step 2: Convert T₁ to Kelvin
We will use the following expression.
K = °C +273.15
K = 38 °C +273.15 = 311 K
Step 3: Calculate T₂
We will use Gay Lussac's law.
P₁/T₁ = P₂/T₂
T₂ = P₂ × T₁/P₁
T₂ = 1.0 atm × 311 K/8.6 atm = 36.2 K