Here as we know that there is no loss of energy
so we can say that maximum kinetic energy will become gravitational potential energy at its maximum height
So here we have

here we have
v = 20 m/s
m = 8000 kg
now from above equation we have



so maximum height is 20.4 m
The parents genotypes can be described as incomplete dominance since each parent provides a different allele of the given gene and none is dominating.
Heterozygous genotype is a process where by an offspring inherits different forms of a particular gene from each parent. .
Looking at the Punnett square, it is oblivious that the offspring inherited different version of the parents genes. This is shown by the presence of the two different letters indicated as Tt for all the four boxes in the Punnett square.
Thus, we can conclude that each parent provides a different allele of the given gene and none of the parents gene is dominating.
Learn more here: brainly.com/question/14671992
Answer:
a = 0.8 m/s^2
Explanation:
Force equation: F = ma
F = ma -> a = F/m = 2.8*10^3 N / 3.5*10^3 kg = 0.8 m/s^2
Answer: 0.01 m
Explanation: The formulae for capillarity rise or fall is given below as
h = (2T×cosθ)/rpg
Where θ = angle mercury made with glass = 50°
T = surface tension = 0.51 N/m
g = acceleration due gravity = 9.8 m/s²
r = radius of tube = 0.5mm = 0.0005m
p = density of mercury.
h = height of rise or fall
From the question, specific gravity of density = 13.3
Where specific gravity = density of mercury/ density of water, where density of water = 1000 kg/m³
Hence density of mercury = 13.3×1000 = 13,300 kg/m³.
By substituting parameters, we have that
h = 2×0.51×cos 50/0.0005×9.8×13,300
h = 0.6556/65.17
h = 0.01 m