<span>Mol is the unit of amount of substance. It is equal to 6.02 x 10^23 molecules. Now, One mol of Sodium chloride (NaCl) contains 6.022x 10^23 molecules of NaCl. Also, the number atoms of both Na (sodium) and Cl (chlorine) will be equal. Similatly, One mol of Aluminium Chloride (AlCl3) contains 6.022x 10^23 molecules of (AlCl3) but the ratio of Al and Cl atoms will be 1:3</span>
I would say mass lost by nuclear collisions. The mass defect is the mass difference between the mass of an atomic nucleus and the sum of the mass of its constituent particles. It equals the energy given off in the formation of the nucleus.
<em>Acetic acid, HC2H3O2</em>
First, calculate for the molar mass of acetic acid as shown below.
M = 1 + 2(12) + 3(1) + 2(16) = 60 g
Then, calculating for the percentages of each element.
<em> Hydrogen:</em>
P1 = ((4)(1)/60)(100%) = <em>6.67%</em>
<em> Carbon:</em>
P2 = ((2)(12)/60)(100%) = <em>40%</em>
<em>Oxygen</em>
P3 =((2)(16) / 60)(100%) = <em>53.33%</em>
<em>Glucose, C6H12O6</em>
The molar mass of glucose is as calculated below,
6(12) + 12(1) + 6(16) = 180
The percentages of the elements are as follow,
<em> Hydrogen:</em>
P1 = (12/180)(100%) = <em>6.67%</em>
<em>Carbon:</em>
P2 = ((6)(12) / 180)(100%) = <em>40%</em>
<em>Oxygen:</em>
P3 = ((6)(16) / 180)(100%) = <em>53.33%</em>
b. Since the empirical formula of the given substances are just the same and can be written as CH2O then, the percentages of each element composing them will just be equal.
Answer:
(a) The rate of formation of K2O is 0.12 M/s.
The rate of formation of N2 is also 0.12 M/s
(b) The rate of decomposition of KNO3 is 0.24 M/s
Explanation:
(a) From the equation of reaction, the mole ratio of K2O to O2 is 2:5.
Rate of formation of O2 is 0.3 M/s
Therefore, rate of formation of K2O = (2×0.3/5) = 0.12 M/s
Also from the equation of reaction, mole ratio of N2 to O2 is 2:5.
Rate of formation of N2 = (2×0.3/5) = 0.12 M/s
(b) From the equation of reaction, mole ratio of KNO3 to O2 is 4:5.
Therefore, rate of decomposition of KNO3 = (4×0.3/5) = 0.24 M/s
A hydrogen bond occurs between a hydrogen from one molecule and an oxygen from another molecule. Option D
<h3>What is the hydrogen bond?</h3>
The hydrogen bond is one that is responsible for association in molecules. It occurs when hydrogen is covalently bonded to a highly electronegative element such as oxygen, nitrogen or Sulphur.
Thus, a hydrogen bond occurs between a hydrogen from one molecule and an oxygen from another molecule. Option D
Learn more about hydrogen bonding:brainly.com/question/10904296?
#SPJ1