A covalent bond means shared electrons between atoms. This is similar to kids sharing markers because the markers (electrons) are being shared between the kids (atoms). Covalent bonds are different than this metaphor because 1) the electrons are constantly moving about while the kids can steal and keep the markers and 2) the electrons and atoms are physically smaller
When a metal bonds with another non-metal an ionic bond is formed
Answer:
<u></u>
Explanation:
<u>1. Balanced molecular equation</u>

<u>2. Mole ratio</u>

<u>3. Moles of HNO₃</u>
- Number of moles = Molarity × Volume in liters
- n = 0.600M × 0.0100 liter = 0.00600 mol HNO₃
<u>4. Moles Ba(OH)₂</u>
- n = 0.700M × 0.0310 liter = 0.0217 mol
<u>5. Limiting reactant</u>
Actual ratio:

Since the ratio of the moles of HNO₃ available to the moles of Ba(OH)₂ available is less than the theoretical mole ratio, HNO₃ is the limiting reactant.
Thus, 0.006 moles of HNO₃ will react completely with 0.003 moles of Ba(OH)₂ and 0.0217 - 0.003 = 0.0187 moles will be left over.
<u>6. Final molarity of Ba(OH)₂</u>
- Molarity = number of moles / volume in liters
- Molarity = 0.0187 mol / (0.0100 + 0.0031) liter = 0.456M
Answer:
<u>2</u><u>1</u><u>.</u><u>0</u><u>9</u><u> </u><u>g</u><u> </u><u>of</u><u> </u><u>AgCl</u>
Explanation:
Hopefully the picture is clear and the method is understandable.
For more information go to
https://socratic.org/questions/5631d10b11ef6b4609a78ee2
<span> weather is the condition of the climate in a particular place at a particular
time.</span>