<h3><u>Question: </u></h3>
The equation for the speed of a satellite in a circular orbit around the Earth depends on mass. Which mass?
a. The mass of the sun
b. The mass of the satellite
c. The mass of the Earth
<h3><u>Answer:</u></h3>
The equation for the speed of a satellite orbiting in a circular path around the earth depends upon the mass of Earth.
Option c
<h3><u>
Explanation:
</u></h3>
Any particular body performing circular motion has a centripetal force in picture. In this case of a satellite revolving in a circular orbit around the earth, the necessary centripetal force is provided by the gravitational force between the satellite and earth. Hence
.
Gravitational force between Earth and Satellite: 
Centripetal force of Satellite :
Where G = Gravitational Constant
= Mass of Earth
= Mass of satellite
R= Radius of satellite’s circular orbit
V = Speed of satellite
Equating
, we get
Speed of Satellite 
Thus the speed of satellite depends only on the mass of Earth.
Folds and faults are difficult to identify because they occur in the interior of rocks and also due to the dense nature of the materials.
<h3>What are faults and folds?</h3>
Faults are lines of weakness are present in materials dues to uneven positioning of the particles of the material.
Folds occurs when infolds occur in materials.
Faults and folds usually occur in rocks.
Folds and faults are difficult to identify because they occur internally and also due to the dense nature of the materials.
Learn more about faults and folds at: brainly.com/question/14240712
The gravitational force will be one quarter.
The gravitational force between two objects is given by the formula
F=GMm/r^2
here, r is the distance between the objects.
Thus the gravitational force is inversely proportional to the square of the distance between the objects, Therefore if the distance between two objects is doubled the force will be one quarter.
Force is mass times acceleration. This means an object with a larger mass needs a stronger force to be moved along at the same acceleration as an object with a small mass
Answer:
The power output of the first motor is, P = 2.0 x 10⁴ watts
Explanation:
Given data,
The height of the building, h = 10 m
The mass of the elevator, m = 1000 kg
The time duration of the motor to do this work, t = 5.0 s
The force acting on the elevator,
F = m x g
= 1000 x 9.8
= 9800 N
The work done by the elevator,
W = F x h
= 9800 x 10
= 98000 J
The power output of the first motor,
P = W / t
= 98000 / 5
= 19600 watts
= 1.96 x 10⁴ watts
Hence, the power output of the first motor is, P = 2.0 x 10⁴ watts