Answer:
18.066 × 10²³ particles
Explanation:
Given data:
Number of moles of Sn = 3 mol
Number of representative particles = ?
Solution:
The given problem will solve by using Avogadro number.
It is the number of atoms , ions and molecules in one gram atom of element, one gram molecules of compound and one gram ions of a substance.
The number 6.022 × 10²³ is called Avogadro number.
For example,
18 g of water = 1 mole = 6.022 × 10²³ molecules of water
1.008 g of hydrogen = 1 mole = 6.022 × 10²³ atoms of hydrogen
For 3 mole of Sn:
3 × 6.022 × 10²³ particles
18.066 × 10²³ particles
Atomic number is same as the number of protons in the element which is further equal to the number of electrons. As the number of electrons increases in the element, the atomic number of the element also increases.
In periodic table, elements are arranged in the groups, and these groups are columns starting from 1 to 18, elements are arranged in increasing order of atomic number. Elements are placed with difference of one atomic number.
First four elements present in the periodic table is:
atomic number is one (1).
atomic number is two (2).
atomic number is three (3).
atomic number is four (4).
Thus, the series of atomic numbers that represents the ordering of consecutive elements within the periodic table is the last option - 1, 2, 3, 4...
Are produced along with a large quantitu of heat