Didjtntbbfjchfjfnt thriving tkfkdkalemrnnfnfjcjfjfjrj
The Chemical fomulla for Zinc Phosphate
Zn3(PO4)2
Answer:
The answer to your question is below
Explanation:
a) HCl 0.01 M
pH = -log [0.01]
pH = - (-2)
pH = 2
b) HCl = 0.001 M
pH = -log[0.001]
pH = -(-3)
pH = 3
c) HCl = 0.00001 M
pH = -log[0.00001]
pH = - (-5)
pH = 5
d) Distilled water
pH = 7.0
e) NaOH = 0.00001 M
pOH = -log [0.00001]
pOH = -(-5)
pH = 14 - 5
pH = 9
f) NaOH = 0.001 M
pOH =- log [0.001]
pOH = 3
pH = 14 - 3
pH = 11
g) NaOH = 0.1 M
pOH = -log[0.1]
pOH = 1
pH = 14 - 1
pH = 13
Answer is: the volume of an irregular object is 4,00 ml.
<span>Volume is the amount of space the object occupies and can be finded immersing it in water in a container with volume markings and than see how much the level of the container changes (goes up).
</span>V(irregular object) = V(final volume) - V(initial volume).
V(irregular object) = 7,50 ml - 3,50 ml.
V(irregular object) = 4,00 ml.
i. The dissolution of PbSO₄ in water entails its ionizing into its constituent ions:

---
ii. Given the dissolution of some substance
,
the Ksp, or the solubility product constant, of the preceding equation takes the general form
.
The concentrations of pure solids (like substance A) and liquids are excluded from the equilibrium expression.
So, given our dissociation equation in question i., our Ksp expression would be written as:
.
---
iii. Presumably, what we're being asked for here is the <em>molar </em>solubility of PbSO4 (at the standard 25 °C, as Ksp is temperature dependent). We have all the information needed to calculate the molar solubility. Since the Ksp tells us the ratio of equilibrium concentrations of PbSO4 in solution, we can consider either [Pb2+] or [SO4^2-] as equivalent to our molar solubility (since the concentration of either ion is the extent to which solid PbSO4 will dissociate or dissolve in water).
We know that Ksp = [Pb2+][SO4^2-], and we are given the value of the Ksp of for PbSO4 as 1.3 × 10⁻⁸. Since the molar ratio between the two ions are the same, we can use an equivalent variable to represent both:

So, the molar solubility of PbSO4 is 1.1 × 10⁻⁴ mol/L. The answer is given to two significant figures since the Ksp is given to two significant figures.