Answer:
-1
Explanation:
According to this question, the oxidation state/number of H and O in C2H4O is +1 and -2 respectively.
The oxidation state of carbon in the compound can be calculated thus:
Where;
x represents the oxidation number of C
C2H4O = 0 (net charge)
x(2) + 1(4) - 2 = 0
2x + 4 - 2 = 0
2x + 2 = 0
2x = -2
Divide both sides by 2
x = -1
The oxidation number of C in C2H4O is -1.
Answer: 
Explanation: <u>Heats</u> <u>of</u> <u>formation</u> is the amount of heat necessary to create 1 mol of a compound from its molecular constituents. The basic conditions the substance is formed is at standard conditions: 1 atm and 25°C. Each compound has its own heat of formation per mol of compound (kJ/mol), but to an element is assigned a value of zero.
<u>Standard</u> <u>Enthalpy</u> <u>Change</u> is defined as the heat absorbed or released when a reaction takes place. It can be positive or negative, which means reaction is endothermic or exothermic, respectively.
Enthalpy change is calculated as the difference between the sum of heat formation of products and the sum of heat formation of the reactants:

For the reaction
2NH₃ + 3N₂O → 4N₂ + 3H₂O
2(-46.2) + 3(82.05) 4(0) + 3(-241.8)
![\Delta H^{0}=3(-241.8)-[ 2(-46.2)+3(82.05)]](https://tex.z-dn.net/?f=%5CDelta%20H%5E%7B0%7D%3D3%28-241.8%29-%5B%202%28-46.2%29%2B3%2882.05%29%5D)


<u>The standard enthalpy change for the reaction is </u>
<u> kJ</u>
Answer:
A hydrocarbon containing a carbon - carbon double bond.
Explanation:
Alkene is hydrocarbon containing a
carbon - carbon double bond.
( Refer the attachment to understand more clearly )