The Milky Way galaxy is the one that the sun is a member of, and it contains
our solar system. We're in it, and you can't get much closer than that.
The Milky Way is known to be bigger than your average galaxy, but it's
probably not correct to say that it contains the 'most' stars of any galaxy.
The estimate for the Milky Way is only a few hundred billion stars.
Answer:
I think they are called balanced forces
Explanation:
The frequency of the human ear canal is 2.92 kHz.
Explanation:
As the ear canal is like a tube with open at one end, the wavelength of sound passing through this tube will propagate 4 times its length of the tube. So wavelength of the sound wave will be equal to four times the length of the tube. Then the frequency can be easily determined by finding the ratio of velocity of sound to wavelength. As the velocity of sound is given as 339 m/s, then the wavelength of the sound wave propagating through the ear canal is
Wavelength=4*Length of the ear canal
As length of the ear canal is given as 2.9 cm, it should be converted into meter as follows:

Then the frequency is determined as
f=c/λ=339/0.116=2922 Hz=2.92 kHz.
So, the frequency of the human ear canal is 2.92 kHz.
Answer:
a) t1 = v0/a0
b) t2 = v0/a0
c) v0^2/a0
Explanation:
A)
How much time does it take for the car to come to a full stop? Express your answer in terms of v0 and a0
Vf = 0
Vf = v0 - a0*t
0 = v0 - a0*t
a0*t = v0
t1 = v0/a0
B)
How much time does it take for the car to accelerate from the full stop to its original cruising speed? Express your answer in terms of v0 and a0.
at this point
U = 0
v0 = u + a0*t
v0 = 0 + a0*t
v0 = a0*t
t2 = v0/a0
C)
The train does not stop at the stoplight. How far behind the train is the car when the car reaches its original speed v0 again? Express the separation distance in terms of v0 and a0 . Your answer should be positive.
t1 = t2 = t
Distance covered by the train = v0 (2t) = 2v0t
and we know t = v0/a0
so distanced covered = 2v0 (v0/a0) = (2v0^2)/a0
now distance covered by car before coming to full stop
Vf2 = v0^2- 2a0s1
2a0s1 = v0^2
s1 = v0^2 / 2a0
After the full stop;
V0^2 = 2a0s2
s2 = v0^2/2a0
Snet = 2v0^2 /2a0 = v0^2/a0
Now the separation between train and car
= (2v0^2)/a0 - v0^2/a0
= v0^2/a0