The reasoning for this is false
Answer:
...
<h2>PE=
<em>work done</em></h2><h2>
<em>m</em><em>gh</em><em>=</em><em>2</em><em>0</em><em>×</em><em>1</em><em>0</em><em>×</em><em>2</em><em>0</em><em>.</em><em>.</em></h2>

.
<em>I </em><em>hope</em><em> </em><em>this</em><em> </em><em>helps</em><em> </em><em>you</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em>
The work done occurs only in the direction the block was moved - horizontally. Work is given by:
W = F(h) * d
Where F(h) is the force applied in that direction (horizontal) and d is the distance in that direction. In this case, F(h) is the horizontal component of the applied force, F(app). However, the question doesn't give us F(app), so we need to find it some other way.
Since the block is moving at a constant speed, we know the horizontal forces must be balanced so that the net force is 0. This means that F(h) must be exactly balanced by the friction force, f. We can express F(h) as a function of F(app):
F(h) = F(app)cos(23)
Friction is a little trickier - since the block is being PUSHED into the ground a bit by the vertical component of the applied force, F(v), the normal force, N, is actually a bit more than mg:
N = mg + F(v) = mg + F(app)sin(23)
Now we can get down to business and solve for F(app) - as mentioned above:
F(h) = f
F(h) = uN
F(h) = u * (mg + F(v))
F(app)cos(23) = 0.20 * (33 * 9.8 + F(app)sin(23))
F(app) = 76.8
Now that we have F(app), we can find the exact value of F(h):
F(h) = F(app)cos(23)
F(h) = 76.8cos(23)
F(h) = 70.7
And now that we have F(h), we can find W:
W = F(h) * d
W = 70.7 * 6.1
W = 431.3
Therefore, the work done by the worker's force is 431.3 J. This also represents the increase in thermal energy of the block-floor system.
Answer:
A 100 N force acting on a lever 2 m from the fulcrum balances an object 0.5 m from the fulcrum on. ... What is the weight of the object(in newtons)? What is its mass (in kg)? ... mass at the one end and effort arm is the distance between pivot and effort applied at the other end.
Explanation:
hpoe this helps you.
The equation that most accurately represents the model of cellular respiration is: C6H12O6 (sugar) + 6O2 (oxygen) = 6CO2 (carbon dioxide) + 6H2O (water) + energy.
<h3>
CELLULAR RESPIRATION:</h3>
Cellular respiration is the process whereby living organisms obtain energy by breaking down food molecules in their cells.
The process of cellular respiration breaks down sugar molecules (glucose) in the presence of oxygen to produce carbon dioxide and water as products, as well as energy in form of ATP.
Therefore, the equation that most accurately represents the model of cellular respiration is: C6H12O6 (sugar) + 6O2 (oxygen) = 6CO2 (carbon dioxide) + 6H2O (water) + energy.
Learn more about cellular respiration at: brainly.com/question/12671790?referrer=searchResults