Answer:
1.9 L
Explanation:
Step 1: Given data
- Initial number of moles of air (n₁): 4.0 mol
- Initial volume of the balloon (V₁): 2.5 L
- Final number of moles of air (n₂): 3.0 mol
- Final volume of the balloon (V₂): ?
Step 2: Calculate the final volume of the balloon
According to Avogadro's law, the volume of an ideal gas is directly proportional to the number of moles. We can calculate the final volume of the balloon using the following expression.
V₁ / n₁ = V₂ / n₂
V₂ = V₁ × n₂ / n₁
V₂ = 2.5 L × 3.0 mol / 4.0 mol
V₂ = 1.9 L
45 m. If each student needs 750 mm of tubing, the teacher should order 45 m of tubing.
a) Find the <em>length in millimetres</em>
Length = 60 students x (750 mm tubing/1 student) = 45 000 mm tubing
b) Convert <em>millimetres to metres
</em>
Length = 45 000 mm tubing x (1 m tubing/1000 mm tubing) = 45 m tubing
Answer:
Substances 1 and 2
Explanation:
an element only has 1 kind of atoms :3
Answer:
CHO
Explanation:
Carbon = 41%, Hydrogen = 4.58%, oxygen = 54.6%
Step 1:
Divide through by their respective relative atomic masses
41/ 12, 4.58/1, 54.6/16
3.41 4.58 3.41
Step 2:
Divide by the lowest ratio:
3.41/3.41, 4.58/3.41, 3.41/3.41
1, 1, 1
Hence the empirical formula is CHO
Its chemical formula H2O, indicates that each of its molecules contains one oxygen and two hydrogen atoms, connected by covalent bonds. The hydrogen atoms are attached to the oxygen atom at an angle of 104.45°. "Water" is the name of the liquid state of H2O at standard conditions for temperature and pressure.