Answer:
Power = 2.45Kw or 2450 Watts.
Explanation:
<u>Given the following data;</u>
Mass, m = 250kg
Height, h = 2m
Time, t = 2secs
We know that acceleration due to gravity, g is equal to 9.8m/s²
Power can be defined as the energy required to do work per unit time.
Mathematically, it is given by the formula;
But Energy = mgh
Substituting into the equation, we have

Power = 2450 Watts
To convert to kilowatt (Kw), we would divide by 1000
Power = 2450/1000
Power = 2.45Kw.
Therefore, the average power output of the weightlifter is 2.45 Kilowatts.
A).
It would decrease because the speed of sound and temperature are proportional.

Frequency, f, is how many cycles of an oscillation occur per second and is measured in cycles per second or hertz (Hz). The period of a wave, T, is the amount of time it takes a wave to vibrate one full cycle. These two terms are inversely proportional to each other: f = 1/T and T = 1/f.

Hope It Helps!
<span>Px = 0
Py = 2mV
second, Px = mVcosφ
Py = –mVsinφ
add the components
Rx = mVcosφ
Ry = 2mV – mVsinφ
Magnitude of R = âš(Rx² + Ry²) = âš((mVcosφ)² + (2mV – mVsinφ)²)
and speed is R/3m = (1/3m)âš((mVcosφ)² + (2mV – mVsinφ)²)
simplifying
Vf = (1/3m)âš((mVcosφ)² + (2mV – mVsinφ)²)
Vf = (1/3)âš((Vcosφ)² + (2V – Vsinφ)²)
Vf = (V/3)âš((cosφ)² + (2 – sinφ)²)
Vf = (V/3)âš((cos²φ) + (4 – 2sinφ + sin²φ))
Vf = (V/3)âš(cos²φ) + (4 – 2sinφ + sin²φ))
using the identity sin²(Ď)+cos²(Ď) = 1
Vf = (V/3)âš1 + 4 – 2sinφ)
Vf = (V/3)âš(5 – 2sinφ)</span>
Answer:
Y, X, Z, W
Explanation:
You know W is the most recent because it features the nucleus in the middle and the electron cloud which was shown in models after the others.