Answer:
<em>Force of gravity may not affect a pendulum during its equilibrium state</em>. But the gravity can affect the pendulum when a force occurs in any direction of the bob connected to the cord that makes a swing sideways. The gravity of pendulum never stops, it always accelerates. So the gravity affects the pendulum acceleration and speed.
<em>Similarly the tension in the cord will not affect the pendulum</em><em> </em>but if change in the length of the pendulum while keeping other factors constant changes the length of the period of pendulum. longer pendulum swings with lower frequency than shorter pendulums.
Answer:
Force, 
Explanation:
Given that,
Mass of the bullet, m = 4.79 g = 0.00479 kg
Initial speed of the bullet, u = 642.3 m/s
Distance, d = 4.35 cm = 0.0435 m
To find,
The magnitude of force required to stop the bullet.
Solution,
The work energy theorem states that the work done is equal to the change in its kinetic energy. Its expression is given by :

Finally, it stops, v = 0



F = -22713.92 N

So, the magnitude of the force that stops the bullet is 
The answer is D. Either absorbed or reflected. The reason is because if no light is being shown on the other side, the substance is not letting any light pass through. Since we do not know anything else about the substance, we do not know which one of the two it is doing. The scientist would not see any light on the detector if 100% of the light is reflected and the same thing would happen if 100% of the light was absorbed.
Answer:
The answer is Insulator, Conductor
Explanation:
A/An Insulator is a material in which charges will not move easily, whereas a/an Conductor is a material that allows charges to move about easily
Answer:

Explanation:
As we know that the sixth order maximum will have path difference given as

here we know that
N = order of maximum

now we have

so we know that

