Suspension is defined as the heterogeneous mixture in which solute particles suspended throughout the bulk of the particles. The particle size is more than 100 nm. In suspension, particles don't pass through filter paper. Sand in water is an example of suspension.
Colloid is defined as a mixture (heterogeneous and homogeneous) in which one substance of dispersed insoluble particles get suspended throughout other substance. The particle size is 1 to 100 nm. In colloid, particles are small, thus pass through filter paper. The particles of air which is dispersed in solid stone is an example colloid.
Emulsion is a mixture of two or more substance which are immiscible in nature. It is a part of colloid. Milk is an example of emulsion.
Solution is a homogeneous mixture with clear or transparent appearance. The particle size in solution is
i.e. molecule in size. There is no effect of light occurs in the solution and solution can't filtered but can separated by the physical technique i.e. distillation.
<span>The part of making a solution that always releases energy is the overall change in forming the solution. The answer is letter D. Although letters A, B and C can be viable answers but, it is not always the case. There are some substances that when you mix or separate them requires more energy or less energy. An example would be w</span>hen the formation (or enthalpy of formation) of carbon
dioxide is negative, it means that it releases heat to the surroundings. When
it releases heat to the surroundings, the reaction is exothermic. Another example is when you mix baking soda and muriatic acid, the resulting mixture is colder. When it is cold, it means that the reaction is endothermic. So the best answer is letter D.
Answer:
I think its D
Explanation:
.........................
Answer:
31395 J
Explanation:
Given data:
mass of water = 150 g
Initial temperature = 25 °C
Final temperature = 75 °C
Energy absorbed = ?
Solution:
Formula:
q = m . c . ΔT
we know that specific heat of water is 4.186 J/g.°C
ΔT = final temperature - initial temperature
ΔT = 75 °C - 25 °C
ΔT = 50 °C
now we will put the values in formula
q = m . c . ΔT
q = 150 g × 4.186 J/g.°C × 50 °C
q = 31395 J
so, 150 g of water need to absorb 31395 J of energy to raise the temperature from 25°C to 75 °C .