Answer:
4.384 * 10^13
Explanation:
Given the expression :
[(6.67 * 10^-11) * (1.99 * 10^30)] ÷ [(1.74*10^3)*(1.74*10^3)]
Applying the laws of indices
[(6.67 * 1.99) *10^(-11 + 30)] ÷ [(1.74 * 1.74) * 10^3+3]
13.2733 * 10^19 ÷ 3.0276 * 10^6
(13.2733 / 3.0276) * 10^(19 - 6)
4.3840996 * 10^13
= 4.384 * 10^13
Quoting from the article itself:
"Since it is above Earth's atmosphere, it gives us clearer pictures of space than telescopes on Earth can."
Answer:

Explanation:
Since the object is under a circular motion, according to Newton's second law, when the object is at the top of the circle we have:

Where
is the centripetal force and is given by:

Replacing and solving for T:

Answer:
The angle between the blue beam and the red beam in the acrylic block is

Explanation:
From the question we are told that
The refractive index of the transparent acrylic plastic for blue light is 
The wavelength of the blue light is 
The refractive index of the transparent acrylic plastic for red light is 
The wavelength of the red light is 
The incidence angle is 
Generally from Snell's law the angle of refraction of the blue light in the acrylic block is mathematically represented as
![r_F = sin ^{-1}[\frac{sin(i) * n_a }{n_F} ]](https://tex.z-dn.net/?f=r_F%20%3D%20%20sin%20%5E%7B-1%7D%5B%5Cfrac%7Bsin%28i%29%20%2A%20%20n_a%20%7D%7Bn_F%7D%20%5D)
Where
is the refractive index of air which have a value of
So
![r_F = sin ^{-1}[\frac{sin(45) * 1 }{ 1.497} ]](https://tex.z-dn.net/?f=r_F%20%3D%20%20sin%20%5E%7B-1%7D%5B%5Cfrac%7Bsin%2845%29%20%2A%20%201%20%7D%7B%201.497%7D%20%5D)

Generally from Snell's law the angle of refraction of the red light in the acrylic block is mathematically represented as
![r_C = sin ^{-1}[\frac{sin(i) * n_a }{n_C} ]](https://tex.z-dn.net/?f=r_C%20%3D%20%20sin%20%5E%7B-1%7D%5B%5Cfrac%7Bsin%28i%29%20%2A%20%20n_a%20%7D%7Bn_C%7D%20%5D)
Where
is the refractive index of air which have a value of
So
![r_C = sin ^{-1}[\frac{sin(45) * 1 }{ 1.488} ]](https://tex.z-dn.net/?f=r_C%20%3D%20%20sin%20%5E%7B-1%7D%5B%5Cfrac%7Bsin%2845%29%20%2A%20%201%20%7D%7B%201.488%7D%20%5D)

The angle between the blue beam and the red beam in the acrylic block

substituting values


Answer:
t = 1.099 s
Explanation:
given,
constant speed = 2.51 m/s
height of balloon above ground = 3.16 m
time elapsed before it hit the ground = ?
Applying equation of motion to the compass



using quadratic formula to solve the equation


t = 1.099 s, -0.586 s
hence, the time elapses before the compass hit the ground is equal to 1.099 s.