False. harry styles all the way
Answer:
0.135 mole of H2.
Explanation:
We'll begin by calculating the number of mole in 3.24 g of Mg. This can be obtained as follow:
Mass of Mg = 3.24 g
Molar mass of Mg = 24 g/mol
Mole of Mg =?
Mole = mass /Molar mass
Mole of Mg = 3.24/24
Mole of Mg = 0.135 mole
Next, we shall write the balanced equation for the reaction. This is illustrated below:
Mg + 2HCl —> MgCl2 + H2
From the balanced equation above,
1 mole of Mg reacted to produce 1 mole of H2.
Finally, we shall determine the number of mole of H2 produced by reacting 3.24 g (i.e 0.135 mole) of Mg. This can be obtained as follow:
From the balanced equation above,
1 mole of Mg reacted to produce 1 mole of H2.
Therefore, 0.135 mole of Mg will also react to produce 0.135 mole of H2.
Thus, 0.135 mole of H2 can be obtained from the reaction.
Answer:
single replacement
Explanation:
Step 1: Data given
single replacement = A reaction in which one element replaces a similar element in a compound. For example, a metal replaces an other metal.
The general form of a single-replacement (also called single-displacement) reaction is:
A+BC→AC+B
Decomposition = a reaction in which a compound breaks down into two or more simpler substances. The general form of a decomposition reaction is:
AB→A+B
Synthesis = A reaction that occurs when one or more compounds combines to form a complex compound:
A + B → AB
Double replacement: a reaction in which the positive and negative ions of two ionic compounds exchange places to form two new compounds.
The general form of a double-replacement reaction is:
AB+CD→AD+BC
Combustion reaction = a reaction in which a substance reacts with oxygen gas, releasing energy in the form of light and heat. Combustion reactions must involve O2 as one reactant.
The reaction Zn + 2HCl → ZnCl2 + H2
⇒ Does not involve O2 = NOT a combustion reaction
⇒ The compounds do not form a complex compound = NOT a synthesis
⇒ A compound does not break down into smaller substances = NOT a decomposition
⇒ There is a replacement between Zn and H. This is a <u>single replacement</u>, not a double replacement reaction.
Rubisco is an important enzyme that helps in making lifeless carbon of carbon dioxide into organic molecules. Rubisco takes carbon dioxide and attaches it to ribulose bisphosphate, a
short sugar chain with five carbon atoms that has rubp as its shortcut. Rubisco then clips the
lengthened chain into to polyglycerate pices, which are pretty flexible molecules and are also used in the feeding of the plant. Most of it is used in the photosynthesis pathway, but some of it is used to make sucrose
(table sugar) to feed the rest of the plant, or stored away in the form
of starch for later use. Hence, rubisco is crucial in the storing of the energy that is created from photosynthesis.
Electrons and protons because they are essentially always the same