Answer:
"we both attract each other with the same force but we know that attraction between two bodies depends upon their mass, greater the mass of two bodies is the force of attraction between them"(got this off the internet).
For this problem, we use the conservation of momentum as a solution. Since momentum is mass times velocity, then,
m₁v₁ + m₂v₂ = m₁v₁' + m₂v₂'
where
v₁ and v₂ are initial velocities of cart A and B, respectively
v₁' and v₂' are final velocities of cart A and B, respectively
m₁ and m₂ are masses of cart A and B, respectively
(7 kg)(0 m/s) + (3 kg)(0 m/s) = (7 kg)(v₁') + (3 kg)(6 m/s)
Solving for v₁',
v₁' = -2.57 m/s
<em>Therefore, the speed of cart A is at 2.57 m/s at the direction opposite of cart B.</em>
Answer:
1) Transition states are short-lived
Explanation:
Transition state theory explains the rates of elementary chemical reactions. It assumes a quasi-equilibrium between reactants and activated transition state complexes.
The following are the characteristics of transition states
- Instability
- Ill-defined
- High energy
- short-lived
The species that must collide for the reaction to occur are shown by the mechanism of reaction and not the balanced reaction itself
Intermediates are consumed in each step of the overall reaction, they are not short lived
-2/5 = 11k - k
-2/5 = 10k
-2/5/10 = k
-2/5 * 10 = k
-2/50 = k
k = -1/25.
-1/25 - 2/5 = 11k is true.
Answer:



Explanation:
= Torque = 36.5 Nm
= Initial angular velocity = 0
= Final angular velocity = 10.3 rad/s
t = Time = 6.1 s
I = Moment of inertia
From the kinematic equations of linear motion we have

Torque is given by

The wheel's moment of inertia is 
t = 60.6 s
= 10.3 rad/s
= 0

Frictional torque is given by

The magnitude of the torque caused by friction is 
Speeding up

Slowing down

Total number of revolutions


The total number of revolutions the wheel goes through is
.