The period T of a pendulum is given by:

where L is the length of the pendulum while

is the gravitational acceleration.
In the pendulum of the problem, one complete vibration takes exactly 0.200 s, this means its period is

. Using this data, we can solve the previous formula to find L:
Answer:
Calculate the wavelength associated with an electron with energy 2000 eV.
Sol: E = 2000 eV = 2000 × 1.6 × 10–19 J
If something is traveling at 20 m/s constant speed AND its direction isn't changing, then its velocity is constant. Another way to say that is: Its acceleration is zero. Zero acceleration means zero NET force acting on the object, or a group of BALANCED forces acting on it, also called EQUILIBRIUM. The required answer is: YES.
If a real projectile is launched, the force of gravity acts on it vertically downward. There's no upward force acting on it to balance gravity. Therefore, the forces on the projectile are NOT balanced, there IS a net vertical force on it, and it's NOT in equilibrium. Too bad.
Answer: Last option
2.27 m/s2
Explanation:
As the runner is running at a constant speed then the only acceleration present in the movement is the centripetal acceleration.
If we call a_c to the centripetal acceleration then, by definition

in this case we know the speed of the runner

The radius "r" will be the distance from the runner to the center of the track



The answer is the last option
We have the meats Arby’s we beat them kids