1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dimaraw [331]
3 years ago
10

Copper spheres of 20-mm diameter are quenched by being dropped into a tank of water that is maintained at 280 K . The spheres ma

y be assumed to reach the terminal velocity on impact and to drop freely through the water. Estimate the terminal velocity by equating the drag and gravitational forces acting on the sphere. What is the approximate height of the water tank needed to cool the spheres from an initial temperature of 360 K to a center temperature of 320 K?
Engineering
1 answer:
Ivenika [448]3 years ago
8 0

Answer:

The height of the water is 1.25 m

Explanation:

copper properties are:

Kc=385 W/mK

D=20x10^-3 m

gc=8960 kg/m^3

Cp=385 J/kg*K

R=10x10^-3 m

Water properties at 280 K

pw=1000 kg/m^3

Kw=0.582

v=0.1247x10^-6 m^2/s

The drag force is:

F_{D} =\frac{1}{2} Co*p_{w} A*V^{2}

The bouyancy force is:

F_{B} =V*p_{w} *g

The weight is:

W=V*p_{c} *g

Laminar flow:

v_{T} =\frac{p_{c}-p_{w}*g*D^{2}   }{18*u} =\frac{(8960-1000)*9.8*(20x10^{-3})^{2}  }{18*0.00143} =1213.48 m/s

Reynold number:

Re=\frac{1000*1213.48*20x10^{-3} }{0.00143} \\Re>>1

Not flow region

For Newton flow region:

v_{T} =1.75\sqrt{(\frac{p_{c}-p_{w}  }{p_{w} })gD }=1.75\sqrt{(\frac{8960-1000}{1000} )*9.8*20x10^{-3} }  =2.186m/s

Re=\frac{1000*2.186*20x10^{-3} }{0.00143} =30573.4

Pr=\frac{\frac{u}{p} }{\frac{K}{pC_{p} } } =\frac{u*C_{p} }{k} =\frac{0.0014394198}{0.582} =10.31

Nu=2+(0.4Re^{1/2} +0.06Re^{2/3} )Pr^{2/5} (u/us)^{1/4} \\Nu=2+(0.4*30573.4^{1/2}+0.06*30573.4^{2/3}  )*10.31^{2/5} *(0.00143/0.00032)^{1/4} \\Nu=476.99

Nu=\frac{h*d}{K_{w} } \\h=\frac{476.99*0.582}{20x10^{-3} } =13880.44W/m^{2} K

\frac{T-T_{c} }{T_{w}-T_{c}  } =e^{-t/T} \\T=\frac{m_{c}C_{p}  }{hA_{c} } =\frac{8960*10x10^{-3}*385 }{13880.44*3} =0.828 s

e^{-t/0.828} =\frac{320-280}{360-280} \\t=0.573\\heightofthewater=2.186*0.573=1.25m

You might be interested in
Please can you solve it for me I need it ​
alexandr402 [8]

umm , is  it okay if we do this on microsoft word , cuz i cant send pics of answers here...

6 0
3 years ago
Re armature of a 4 pole DC generator is required to generate an emf of 520v on open circuit when revolving at a speed of 660rpm.
bija089 [108]

Since the armature is wave wound, the magnetic flux per pole is 0.0274 Weber.

<u>Given the following data:</u>

  • Emf = 520 Volts
  • Speed = 660 r.p.m
  • Number of armature conductors = 144 slots
  • Number of poles = 4 poles
  • Number of parallel paths = 2

To find the magnetic flux per pole:

Mathematically, the emf generated by a DC generator is given by the formula;

E = \frac{\theta ZN}{60} × \frac{P}{A}

<u>Where:</u>

  • E is the electromotive force in the DC generator.
  • Z is the total number of armature conductors.
  • N is the speed or armature rotation in r.p.m.
  • P is the number of poles.
  • A is the number of parallel paths in armature.
  • Ф is the magnetic flux.

First of all, we would determine the total number of armature conductors:

Z = 144 × 2 × 3

Z = 864

Substituting the given parameters into the formula, we have;

520 = \frac{\theta (864)(660)}{60} × \frac{4}{2}

520 = \theta (864)(11) × 2

520 = 19008 \theta \\\\\Theta = \frac{520}{19008}

<em>Magnetic flux </em><em>=</em><em> 0.0274 Weber.</em>

Therefore, the magnetic flux per pole is 0.0274 Weber.

Read more: brainly.com/question/15449812?referrer=searchResults

5 0
3 years ago
The amplitudes of the displacement and acceleration of an unbalanced motor were measured to be 0.15 mm and 0.6*g, respectively.
ehidna [41]

Answer:

The speed of shaft is 1891.62 RPM.

Explanation:

given that

Amplitude A= 0.15 mm

Acceleration = 0.6 g

So

we can say that acceleration= 0.6 x 9.81

acceleration,a=5.88\ \frac{m}{s^2}

We know that

a=\omega ^2A

So now by putting the values

a=\omega ^2A

5.88=\omega ^2 \0.15\times 10^{-3}

\omega =198.09\ \frac{rad}{s}

We know that

  ω= 2πN/60

198.0=2πN/60

N=1891.62 RPM

So the speed of shaft is 1891.62 RPM.

                                               

       

4 0
3 years ago
The size of Carvins Cove water reservoir is 3.2 billion gallons. Approximately, 11 cfs of water is continuous withdrawn from thi
Zolol [24]

Answer:

471 days

Explanation:

Capacity of Carvins Cove water reservoir = 3.2 billion gallons i.e. 3.2 x 10˄9 gallons

As,  

1 gallon = 0.133 cubic feet (cf)

Therefore,  

Capacity of Carvins Cove water reservoir in cf  = 3.2 x 10˄9 x 0.133

                                                                         = 4.28 x 10˄8

 

Applying Mass balance i.e

Accumulation = Mass In - Mass out   (Eq. 01)

Here  

Mass In = 0.5 cfs

Mass out = 11 cfs

Putting values in (Eq. 01)

Accumulation  = 0.5 - 11

                         = - 10.5 cfs

 

Negative accumulation shows that reservoir is depleting i.e. at a rate of 10.5 cubic feet per second.

Converting depletion of reservoir in cubic feet per hour = 10.5 x 3600

                                                                                       = 37,800

 

Converting depletion of reservoir in cubic feet per day = 37, 800 x 24

                                                                                         = 907,200  

 

i.e. 907,200 cubic feet volume is being depleted in days = 1 day

1 cubic feet volume is being depleted in days = 1/907,200 day

4.28 x 10˄8 cubic feet volume will deplete in days  = (4.28 x 10˄8) x                    1/907,200

                                                                                 = 471 Days.

 

Hence in case of continuous drought reservoir will last for 471 days before dry-up.

8 0
3 years ago
Select the best answer for the question.
dalvyx [7]
I think the Acid level
5 0
4 years ago
Other questions:
  • A closed system undergoes an adiabatic process during which the work transfer into the system is 12 kJ. The system then returns
    14·1 answer
  • If the outside diameter of a pipe is 2 m, the length of a piece of insulation wrapped around it would be a)- 628 cm b)- 12.56 m.
    15·1 answer
  • What did Congress do in 1787 to settle land disputes among the settlers?
    11·1 answer
  • The bulk density of a compacted soil specimen (Gs = 2.70) and its water content are 2060 kg/m^3 and 15.3%, respectively. If the
    5·1 answer
  • Is there anyone who can help me with welding?
    7·1 answer
  • What car has autopilot?
    14·2 answers
  • Calculate the number of vacancies per cubic meter for some metal, M, at 783°C. The energy for vacancy formation is 0.95 eV/atom,
    11·1 answer
  • In the case of a collision causing property damage, injury, or death, you are required to ____
    14·2 answers
  • What is voltage drop?
    5·1 answer
  • Which of the given strategies is specifically a competitive advantage sustainment strategy?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!