Answer:
See explanation and image attached
Explanation:
A bond line structure refers to any structure of a covalent molecule wherein the covalent bonds present in the molecule are represented with a single line for each level of bond order.
The bond-line structure of CH3CH2O(CH2)2CH(CH3)2 has been shown in the image attached. We know that oxygen has a lone pair of electrons and this has been clearly shown also in the image attached.
Answer:
185.05 g.
Explanation
Firstly, It is considered as a stichiometry problem.
From the balanced equation: 2LiCl → 2Li + Cl₂
It is clear that the stichiometry shows that 2.0 moles of LiCl is decomposed to give 2.0 moles of Li metal and 1.0 moles of Cl₂, which means that the molar ratio of LiCl : Li is (1.0 : 1.0) ratio.
We must convert the grams of Li metal (30.3 g) to moles (n = mass/atomic mass), atomic mass of Li = 6.941 g/mole.
n = (30.3 g) / (6.941 g/mole) = 4.365 moles.
Now, we can get the number of moles of LiCl that is needed to produce 4.365 moles of Li metal.
Using cross multiplication:
2.0 moles of LiCl → 2.0 moles of Li, from the stichiometry of the balanced equation.
??? moles of LiCl → 4.365 moles of Li.
The number of moles of LiCl that will produce 4.365 moles of Li (30.3 g) is (2.0 x 4.365 / 2.0) = 4.365 moles.
Finally, we should convert the number of moles of LiCl into grams (n = mass/molar mass).
Molar mass of LiCl = 42.394 g/mole.
mass = n x molar mass = (4.365 x 42.394) = 185.05 g.
Tingnan ang pinakamahuhusay na kagawian at patnubay sa pampublikong kalusugan para mapanatiling ligtas ang iyong mga customer at tauhan.
HOPE IT HELPS:)
PLS FOLLOW:)
#BRAINLIEST
The Molarity of a solution = number of moles / volume.
Volume = 244ml = 0.244L
So it follows that number of moles = Molarity * volume
Number of moles = 0.135 * 0.244 = 0.03945.
Hence the number of moles = 0.03945
T k = 15 + 273 = 288 K
4.6 / 13 => 0.353 atm
0.50 / 0.10 => 5 L
<span>(15 + 273) K x (13 atm / 7.6 atm) x (0.50 L / 0.10 L)
</span>
<span>= </span>2463.15 K
<span>hope this helps!</span>