I am pretty sure the answer to your question is B
Ohms Law: V = IR
V is the voltage in volts
I is the current in amps
R is the resistance in Ohms
Rearrange: R = V/I
R = (110)/(0.050)
R = 2200
There are 2200 Ohms of resistance in the circuit.
Answer:
Staples, Bestbuy, Maybe Homedepot
Explanation:
Electrons that are further away from the nucleus have more energy. As they enter an "excited" state, they jump up orbits.
The west constituent of their sequence needs to cancel out 58 mph crosswind. Subsequently a northwest direction is a 45-degree angle up to even with the destination. That is the third point out of the triangle and the right angle is at the destination. The top side is the west constituent of their flight the vertical side is their resultant travel and the hypotenuse is their definite distance flown. Since the 58 mph crosswind was negated by flying northwest, the distance from the beginning to the destination must be the same distance as the west component of their travel. The hypotenuse is square root of twice the side since it has 2 identical sides.
c = sqrt (58^2 + 58^2) = sqrt (6728) = 82.02
Alternative solution:
c = sqrt (2) * 58 = 1.414 * 58 = 82.02
Therefore, they have to fly 82.02 mph