The balanced chemical reaction describing this decomposition is as follows:
<span>4c3h5n3o9 .............> 6N2 + 12CO2 +10H2O + O2
From the periodic table:
mass of oxygen = 16 grams
mass of nitrogen = 14 grams
mass of hydrogen = 1 gram
mass of carbon = 12 grams
Therefore:
mass of </span><span>C3H5N3O9 = 3(12) + 5(1) + 3(14) + 9(16) = 227 grams
mass of O2 = 2(16) = 32 grams
From the balanced chemical equation:
4(227) = 908 grams of </span>C3H5N3O9 produce 32 grams of O2. Therefore, to know the amount of oxygen produced from 4.5*10^2 grams <span>C3H5N3O9, all we need to do is cross multiplication as follows:
amount of oxygen = (4.5*10^2*32) / (908) = 15.859 grams</span>
Answer:
A and B
Explanation:
the other two make no sense at all
An an increase in
temperature lead to more effective collisions between reactant particles and an
increase in the rate of a chemical reaction because the number of
molecules with sufficient energy to react increases. The answer is number 3.
For equal moles of gas, temperature can be calculated from ideal gas equation as follows:
P×V=n×R×T ...... (1)
Initial volume, temperature and pressure of gas is 3.25 L, 297.5 K and 2.4 atm respectively.
2.4 atm ×3.25 L=n×R×297.5 K
Rearranging,
n\times R=0.0262 atm L/K
Similarly at final pressure and volume from equation (1),
1.5 atm ×4.25 L=n×R×T
Putting the value of n×R in above equation,
1.5 atm ×4.25 L=0.0262 (atm L/K)×T
Thus, T=243.32 K
The balanced reaction for combustion is as follows ;
2C₂H₅OH + 6O₂ ---> 4CO₂ + 6H₂O
the stoichiometry of C₂H₅OH to O₂ is 2:6
that means 2 mol of C₂H₅OH reacts with 6 mol of O₂.
when 1 mol of C₂H₅OH reacts with 6/2 mol of O₂,
then 0.3020 mol of C₂H₅OH reacts with - 6/2 x 0.3020
therefore number of O₂ moles reacted = 0.91 mol