1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
julsineya [31]
3 years ago
11

A body weighs 100newtons and 80newtons when submerged in water.calculate the upthrust action on the body

Physics
1 answer:
katovenus [111]3 years ago
3 0

Answer:

20 N

Explanation:

In air, the normal force is equal to the weight.

∑F = ma

N − mg = 0

N = mg

Submerged in water, the normal force is equal to the weight minus the buoyant force:

∑F = ma

B + N − mg = 0

N = mg − B

Plugging in values:

80 N = 100 N − B

B = 20 N

You might be interested in
In noisy factory environments, it's possible to use a loudspeaker to cancel persistent low-frequency machine noise at the positi
Vaselesa [24]

Answer:

7.39 m or 3.61 m

Explanation:

\lambda = Wavelength

f = Frequency = 90 Hz

v = Speed of sound = 340 m/s

Path difference of the two waves is given by

s_1-s_2=\frac{\lambda}{2}

Velocity of wave

v=f\lambda\\\Rightarrow \lambda=\frac{v}{f}\\\Rightarrow \lambda=\frac{340}{90}\\\Rightarrow \lambda=3.78\ m

s_1=s_2\pm\frac{\lambda}{2}\\\Rightarrow s_1=5.5\pm \frac{3.78}{2}\\\Rightarrow s_1=7.39\ m, 3.61\ m

So, the location from the worker is 7.39 m or 3.61 m

7 0
3 years ago
Energy in motion is _____ energy. potential scientific kinetic
Ket [755]

Answer:

kinetic energy

Explanation:

4 0
3 years ago
Read 2 more answers
A student connects a small solar panel to a 40 a resistor to make a simple circuit. The solar panel produces a voltage of 2 0.
Nastasia [14]
<h3>Solution for the above question : -</h3>

Ohm's law states that :

  • v = ir

the terms used are :

  • r = resistance
  • v = potential \:  \: difference
  • i  = current

let's solve for electric current :

  • 2 = i \times 40

  • i =  \dfrac{2}{40}

  • i = 0.05 \: A

  • i = 50 \: mA

\mathfrak{good\:  \: luck \:  \: for \:  \: your \:  \: assignment}

8 0
3 years ago
8. An unpowered flywheel is slowed by a constant frictional torque. At time t = 0 it has an angular velocity of 200 rad/s. Ten s
allsm [11]

Answer:

a) \omega = 50\,\frac{rad}{s}, b) \omega = 0\,\frac{rad}{s}

Explanation:

The magnitude of torque is a form of moment, that is, a product of force and lever arm (distance), and force is the product of mass and acceleration for rotating systems with constant mass. That is:

\tau = F \cdot r

\tau = m\cdot a \cdot r

\tau = m \cdot \alpha \cdot r^{2}

Where \alpha is the angular acceleration, which is constant as torque is constant. Angular deceleration experimented by the unpowered flywheel is:

\alpha = \frac{170\,\frac{rad}{s} - 200\,\frac{rad}{s} }{10\,s}

\alpha = -3\,\frac{rad}{s^{2}}

Now, angular velocities of the unpowered flywheel at 50 seconds and 100 seconds are, respectively:

a) t = 50 s.

\omega = 200\,\frac{rad}{s} - \left(3\,\frac{rad}{s^{2}} \right) \cdot (50\,s)

\omega = 50\,\frac{rad}{s}

b) t = 100 s.

Given that friction is of reactive nature. Frictional torque works on the unpowered flywheel until angular velocity is reduced to zero, whose instant is:

t = \frac{0\,\frac{rad}{s}-200\,\frac{rad}{s} }{\left(-3\,\frac{rad}{s^{2}} \right)}

t = 66.667\,s

Since t > 66.667\,s, then the angular velocity is equal to zero. Therefore:

\omega = 0\,\frac{rad}{s}

7 0
3 years ago
Two protons are released from rest when they are 0.720 nm apart. For related problem-solving tips and strategies, you may want t
Gnesinka [82]

Answer:

a) Speed of the electrons at maximum speed = (1.384 × 10⁴) m/s

The maximum speed occurs at the point where all of the initial potential energy is converted into kinetic energy.

b) Maximum acceleration of the protons = (2.660 × 10¹⁷) m/s²

The maximum acceleration occurs at the minimum distance apart for the two protons.

Explanation:

The maximum speed occurs when all the potential energy of the protons has been converted to kinetic energy.

The potential energy between the two protons at the instant of release is given by

U = (kq₁q₂/r)

k = Coulomb' s constant = (8.988 × 10⁹) Nm²/C²

q₁ = q₂ = charge on a proton = q = (1.602 × 10⁻¹⁹) C

r = separation between the two protons = 0.72 nm = (7.2 × 10⁻¹⁰) m

U = (kq²/r) = [(8.988 × 10⁹) × (1.602 × 10⁻¹⁹)²] ÷ (7.2 × 10⁻¹⁰) = (3.204 × 10⁻¹⁹) N/m or Joules

At the maximum speeds, the two protons will not possess any potential Energy, only kinetic energy.

The sum of kinetic and potential energies is always constant for the system

(Initial Kinetic Energy) + (Initial Potential Energy) = (Kinetic Energy at maximum speed) + (Potential Energy at maximum speed)

Initial Kinetic Energy of the system = 0 J (Since both protons were intially at rest)

Initial Potential Energy = (3.204 × 10⁻¹⁹) J

Kinetic Energy at maximum speed = Sum of the kinetic energies of the protons at this point = (½mv²) + (½mv²) = (mv²) J (Since theu are both protons, they have the same mass and the same speed at maximum speed)

Potential Energy at maximum speed = 0 J

0 + (3.204 × 10⁻¹⁹) = mv² + 0

mv² = (3.204 × 10⁻¹⁹)

m = mass of a proton = (1.673 × 10⁻²⁷) kg

v = speed of each of the protons at maximum speed = ?

v = √[(3.204 × 10⁻¹⁹) ÷ m]

v = √[(3.204 × 10⁻¹⁹) ÷ (1.673 × 10⁻²⁷)]

v = √(1.915 × 10⁸) = 13,838.8 m/s = (1.384 × 10⁴) m/s

b) Since the two protons repel each other and force of repulsion reduces as the dI stance between the protons increases, the maximum acceleration occurs at the minimum distance apart for the two protons.

Force of repulsion acting on each proton is given through Coulomb's law as

F = (kq₁q₂/r²)

And the force acting on each proton is obtainable using Newton's law that

F = ma

So, the acceleration of each proton at any time is obtainable through a relation of these 2 formulas.

ma = (kq₁q₂/r²)

a = (kq₁q₂/r²m)

k = Coulomb' s constant = (8.988 × 10⁹) Nm²/C²

q₁ = q₂ = charge on a proton = q = (1.602 × 10⁻¹⁹) C

r = separation between the two protons = 0.72 nm = (7.2 × 10⁻¹⁰) m

m = mass of a proton = (1.673 × 10⁻²⁷) kg

a = [(8.988 × 10⁹) × (1.602 × 10⁻¹⁹)²] ÷ [(7.2 × 10⁻¹⁰)² × (1.673 × 10⁻²⁷)]

a = (2.660 × 10¹⁷) m/s²

Hope this Helps!!!

5 0
3 years ago
Other questions:
  • gives the speed v versus time t for a 0.500 kg object of radius 6.00 cm that rolls smoothly down a 30° ramp. The scale on the ve
    5·1 answer
  • Christopher conducts an experiment in which he tests how much sugar dissolves at different temperatures of water. One step requi
    14·2 answers
  • An ideal gas expands at a constant total pressure of 3.0 atm from 400 mL to 600 mL. heat then flows out of the gas at a constant
    11·1 answer
  • Why does a light go out when you turn off the wall switch?
    5·2 answers
  • A small rubber ball is launched by a compressed-air cannon from ground level with an initial speed of 17.3 m/s directly upward.
    15·1 answer
  • The statement that "the lowest energy configuration for an atom is the one having the maximum number of unpaired electrons allow
    5·2 answers
  • During a collision, a bus runs into a skateboarder inelastically. If the mass of the skateboarders is 70 kg and is moving at 12
    8·1 answer
  • Can a magnet attract a pure substance?
    10·1 answer
  • Who Henry Mosléy?!!!​
    8·1 answer
  • Someone please help me!! See PDF to help
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!