I don't know if this is the answer you are looking for but it would be flat unless the player pushed the tuning slide in.
When you boil water, you aren't changing the elements. You're just making water vapor. However, when you burn paper, it becomes carbon (mostly). So physical changes will not change the substance, only chemical changes will.
<span>The composition of a fertilizer is usually express in NPK number. NPK number is in terms of Percent by mass of the said element which are Nitrogen, Phosphorus and Potassium. A 15-35-15 fertilizer has 15%
Nitrogen, 35% Phosphorous, and 15% Potassium by mass. If you have 10 g of this
fertilizer, to get the number of moles of phosphorus, you multiply the mass by
35%, which is equal to 10*0.35 or 3.5 g phosphorus. Then you divide the
calculated mass of phosphorous by its molar mass which is 30.97 g/mol.
Therefore, you have 3.5/30.97 which is equal to 0.1130 mol Phosphorus. This is the amount of Phosphorus in moles in the fertilizer.</span>
Particles in a gas are far apart compared to a solid or liquid, allowing it not to have a definitive shape or volume. This also means that gases can fill any container and be easily compressed.
Explanation:
1 literThe total of water is equal to 1000.0 g of water
we need to find the molality of a solution containing 10.0 g of dissolved in Na₂S0₄1000.0 g of water
1. For that find the molar mass
Na: 2 x 22.99= 45.98
S: 32.07
O: 4 x 16= 64
The total molar mass is 142.05
We have to find the number of moles, y
To find the number of moles divide 10.0g by 142.05 g/mol.
So the number of moles is 0.0704 moles.
For the molarity, you need the number of moles divided by the volume. So, 0.0704 mol/1 L.
The molarity would end up being 0.0704 M
The molality of a solution containing 10.0 g of Na2SO4 dissolved in 1000.0 g of water is 0.0704 Mliter