Answer:
146.85 g/mol
Explanation:
PV=nRT
n=mass/molar mass
covert from mmhg to atm = 0.184 atm
convert from ml to L= 0.108 L
convert from degree C to K= 456.15 K
convert from mg to g= 0.07796g
then rearrange the formula:
n=PV/RT
=(0.184)(0.108)/(0.08206)(456.15)
n= 5.308*10^(-4)
rearrange the n formula interms of molar mass:
Molar mass= mass/n
=0.07796/(5.308*10^-4)
molar mass= 146.85g/mol
Answer:
pH = 10.75
Explanation:
To solve this problem, we must find the molarity of [OH⁻]. With the molarity we can find the pOH = -log[OH⁻]
Using the equation:
pH = 14 - pOH
We can find the pH of the solution.
The molarity of Ca(OH)₂ is 2.8x10⁻⁴M, as there are 2 moles of OH⁻ in 1 mole of Ca(OH)₂, the molarity of [OH⁻] is 2*2.8x10⁻⁴M = 5.6x10⁻⁴M
pOH is
pOH = -log 5.6x10⁻⁴M
pOH = 3.25
pH = 14-pOH
<h3>pH = 10.75</h3>
Answer: Option (d) is the correct answer.
Explanation:
In winter's, temperature of atmosphere is low and due to this molecules of air present in the tire come closer to each other as they gain potential energy and loses kinetic energy.
Hence, air pressure decreases and there is need to fill more air in the tire.
Whereas is summer's, temperature is high so, molecules of air inside the tire gain kinetic energy and move rapidly from one place to another due to number of collisions. So, air pressure increases and there is no need to fill more air inside the tire.
Thus, we can conclude that the temperature is lower, so the air inside the tires contracts.
Sugar and water are made with tiny particles. They are both made from molecules and atoms.