We have a problem about conservation and velocity, we will find that it does affect the speed of the ball, increasing it by 1.7m/s.
There is something called momentum, which we can define as the "quantity of movement", and we can simply write as the product between velocity and mass.
The momentum is conservative, then we have conservation of momentum.
This means that when you run whit the ball in your hands, the momentum of the ball will be equal to your velocity times the mass of the ball, and this must conserve after you throw the ball.
Now with this idea in mind, this means that if you run with a velocity V, and you throw the ball with a velocity V', the velocity of the ball when it leaves your hand will be:
V + V'.
So, if you run with a velocity of 1.7m/s forward and you throw the ball (assuming in the same direction) the speed of the ball will be 1.7m/s larger than if you were to throw it standing still.
If you want to learn more, you can read:
brainly.com/question/13639113
Answer:
B, A, C, D
Explanation:
i hope it helps. im just kinda guessing.
good luck!°°°°°⁰⁰⁰⁰⁰₀₀₀₀₀oo00OO
Answer:
<em>Undergo global warming at a faster rate than what we are seeing currently</em>
Explanation:
Climate can be described as the average weather of a place. The climate of a particular place can be described after looking at the temperature of the place for a year or more.
If factors, such as the Sun and volcanoes controlled climates then there would be an increase in the temperature and more global warming. Volcanoes can be described as heat erupting from mountains which will, of course, lead to global warming.
Is the Frog Toy a piece of literature? If so, the type of wave is the "Wave of Life." Spring brings new life and a new start from the harsh winter.
Answer:
123 J transfer into the gas
Explanation:
Here we know that 123 J work is done by the gas on its surrounding
So here gas is doing work against external forces
Now for cyclic process we know that

so from 1st law of thermodynamics we have


so work done is same as the heat supplied to the system
So correct answer is
123 J transfer into the gas