Answer:
H₂O is the limiting reactant
Theoretical yield of 240 g Al₂O₃ and 14 g H₂
Explanation:
Find how many moles of one reactant is needed to completely react with the other.
6.5 mol Al × (3 mol H₂O / 2 mol Al) = 9.75 mol H₂O
We need 9.75 mol of H₂O to completely react with 6.5 mol of Al. But we only have 7.2 mol of H₂O. Therefore, H₂O is the limiting reactant.
Now find the theoretical yield:
7.2 mol H₂O × (1 mol Al₂O₃ / 3 mol H₂O) × (102 g Al₂O₃ / mol Al₂O₃) ≈ 240 g Al₂O₃
7.2 mol H₂O × (3 mol H₂ / 3 mol H₂O) × (2 g H₂ / mol H₂) ≈ 14 g H₂
Since the data was given to two significant figures, we must round our answer to two significant figures as well.
Explanation:
HNO3(aq) is the compound produced by a neutralization
Answer:
The carbocation intermediate reacts with a nucleophile to form the addition product.
Explanation:
The reaction of benzene with an electrophile is an electrophillic substitution reaction. Here the electrophile replaces hydrogen. There is no formation of carbocation as intermediate in the reaction. Infact there is transition state where the electorphile attacks on benzene ring and at the same time the hydrogen gets removed from the benzene. So a transition carbocation is formed.
The general mechanism is shown in the figure.
i) Attack of the electrophile on the benzene (which is the nucleophile)
ii) The carbocation intermediate loses a proton from the carbon bonded to the electrophile.
iii) the carbocation formation is the rate determining step.
iv) There is no formation of addition product.
Thus the wrong statement is
The carbocation intermediate reacts with a nucleophile to form the addition product.
Answer to the Question
C. Barium phosphate
Answer:
The first and last choice
Hope this helps! Plz mark brainliest