Solo lo ago para obtener puntos jejeje
Answer:
The molar mass of the compound given is 182.182 g/mol.
Explanation:
To calculate the molar mass of the compound, we must multiply the number of moles of each element by the the individual molar mass of each element and add them together.
Let's start with Calcium. The molar mass of Calcium is 40.078. In this compound, we have three moles of Calcium, so we should multiply this number by 3.
40.078 g/mol * 3 mol = 120.234 g
Now, let's do the same for Phosphorus.
30.974 g/mol * 2 g/mol = 61.948 g
To find the molar mass of the entire compound, we should add these two values together.
120.234 g + 61.948 g = 182.182 g
Therefore, the correct answer is 182.182 g/mol.
Hope this helps!
Answer: None of the above statements is false.
Explanation:
In a solid substance, particles are closely held together due to which a solid substance has definite shape and volume. Therefore, solids are also incompressible in nature.
In liquids, the molecules are slightly away from each other due to which they can slide past each other. Hence, liquids do not have a fixed shape but they have a definite volume. Liquids are also incompressible in nature.
In gases, the particles are held by Vander waal forces due to which they move rapidly from one place to another. Hence, gases are highly compressible in nature.
Thus, we can conclude that none of the given statements are false.
The density of the rectangular solid is 4.96815 cm.
Answer:
The temperature at which the reaction changes from non-spontaneous to spontaneous is 588.735 K
Explanation:
The spontaneity of a reaction is determined by the change in Gibbs Free Energy,
.

If
is greater than zero, then a reaction is feasible.
If
is less than zero, then a reaction is not feasible.
To determine the temperature at which the reaction changes from non-spontaneous to spontaneous, we should equate the
to zero.
We take
as the limiting condition.

Therefore, the temperature is: 588.735K