Answer:The answer is D.1,3
Explanation:
Answer:
Mass = 141.6 g
Explanation:
Given data:
Mass of Kr in gram = ?
Volume in L = 9.59 L
Temperature = 46.0°C
Pressure = 4.62 atm
Solution:
The given problem will be solve by using general gas equation,
PV = nRT
P= Pressure
V = volume
n = number of moles
R = general gas constant = 0.0821 atm.L/ mol.K
T = temperature in kelvin
Now we will convert the temperature.
46.0+273 = 319 K
4.62 atm × 9.59 L = n× 0.0821 atm.L/ mol.K ×319 K
44.3 atm.L = n×26.19 atm.L/ mol
n = 44.3 atm.L / 26.19 atm.L/ mol
n = 1.69 mol
Mass in gram:
Mass = number of moles × molar mass
Mass = 1.69 mol × 83.79 g/mol
Mass = 141.6 g
Answer:
repel
Explanation:
When it comes to electrical forces, "opposites charges attract" while "like charges repel."
There are primarily two types of charges: positive charge and negative charge. The forces they exert upon each other will depend on their charges. The<u> positive charge has an </u><em><u>attractive force</u></em><u> to a negative charge.</u> On the contrary,<u> it has a</u><em><u> repulsive force</u></em><u> to the same positive charge</u>. Thus, it will repel each other.
So this means that <em>opposite charges will draw closer together</em> while<em> like charges will move apart from each other.</em>
The anion<span> is also </span>larger than<span> the </span>atom<span> because of </span>electron-electron repulsion<span>. As more </span>electrons are<span> added to the </span>outer shell<span>, and even to </span>higher<span> principle energy levels, the </span>repulsion<span> bewteen the negatively charged particles grows, pushing the </span>shells<span> farther from the nucleus.</span>