Answer:
When you are exercising, your muscles need extra oxygen—some three times as much as resting muscles. This need means that your heart starts pumping faster, which makes for a quicker pulse. Meanwhile, your lungs are also taking in more air, hence the harder breathing.
Explanation:
Answer:
An emulsifying agent is typically characterized by having <u><em>d. one polar end and one nonpolar end.</em></u>
Explanation:
Emulsifiers are substances that have the ability to bind, for example, fats with those substances that have mostly water in their conformation. In other words, the emulsifier facilitates mixtures of two or more immiscible liquid substances.
This is because the molecules of an emulsifier are often lipophilic (attract oil) at one end and hydrophilic (attract water) at the other. In other words it consists of a polar (hydrophilic) head group and a non-polar (hydrophobic) tail.
<u><em>An emulsifying agent is typically characterized by having d. one polar end and one nonpolar end.</em></u>
Answer:
The correct answer is sedimentary rock.
Explanation:
The sedimentary rocks are the types of rocks, which are produced due to the deposition and the succeeding cementation of that substance at the shallow part of the Earth and within the water bodies. In the geological sciences, sedimentation refers to the procedure of the deposition of the solid substance from a state of solution or suspension in a fluid, that is, water or air.
Explanation:
We leave a soda in the car overnight and the temperature dips to 25 °F. To see if it will freeze we have to convert the °F to °C.
T(°C) = ( T(°F) - 32 ) *5/9
T(°C) = (25 - 32) *5/9
T(°C) = -3.9 °C
Since -3.9 °C is a temperature greater than the freezing point (-4.5 °C) the soda won't freeze.
Answer: The soda won't freeze.
Answer: limiting reactant (or limiting reagent): The reactant that determines the amount of product that can be formed in a chemical reaction.
Explanation: Your welcome buddy.