The one that has a higher entropy for the reaction is products.
<h3>What is entropy?</h3>
Entropy is a measureable physical characteristic and a scientific notion that is frequently connected to a condition of disorder, unpredictability, or uncertainty. It is the measurement of the amount of thermal energy per unit of temperature in a system that cannot be used for productive work. It is a measure of a system's molecular disorder or unpredictability since work is produced by organized molecular motion.
It should bm be noted that the entropy of gas is more than entropy of aqueous which is more than the entropy of liquid and the entropy of solid.
On the product side there are more gas than the reactant side. Therefore, product has more entropy.
Learn more about entropy on:
brainly.com/question/6364271
#SPJ1
Answer:
Photosynthesis
Explanation:
If thats one of the options, thats the answer. Let me know if its not, and I'll be glad to help :)
Answer:
Total Kcal energy produced in the catabolism of mannoheptulose = 1184 Kcal
Explanation:
The molecular formula of mannoheptulose is C₇H₁₄O₇.
The structure is as shown in the attachment below.
Number of C-C bonds present in mannoheptulose = 6
Number of C-H bonds present in mannoheptulose = 8
Since the each C-C bond contains 76 Kcal of energy,
Amount of energy present in six C-C bonds = 6 * 76 = 456 Kcal
Also, since each C-H bond contains 91 Kcal of energy;
amount of energy present in eight C-H bonds = 8 * 91 = 728 Kcal
Total Kcal energy produced in the catabolism of mannoheptulose = 456 + 728 = 1184 Kcal
Answer:
If we assume that there will be enough Hydrogen for the reaction to occur, then there will be 8 moles of NH
Explanation:
The balanced equation will look like this:
4N2 + 4H2 -> 8NH
The answer should be hydrogen bonding. Water only has oxygen and hydrogen in it, which are both nonmetals, so you know the answer cannot be metallic or ionic. It also cannot be nonpolar because the electronegativity of the oxygens will make the molecule polar. You can also know it is hydrogen bonding because it can only take place when a hydrogen is attached to an oxygen, fluorine, or nitrogen. These bonds are very strong attractions, so the molecules are extremely hard to pull apart, creating a high boiling point. Hope that helps!