Base is Ca(OH)2.
Acid is H3PO4.
First part of the salt comes from base,
second par comes from the acid.
Answer:
At 430.34 K the reaction will be at equilibrium, at T > 430.34 the
reaction will be spontaneous, and at T < 430.4K the reaction will not
occur spontaneously.
Explanation:
1) Variables:
G = Gibbs energy
H = enthalpy
S = entropy
2) Formula (definition)
G = H + TS
=> ΔG = ΔH - TΔS
3) conditions
ΔG < 0 => spontaneous reaction
ΔG = 0 => equilibrium
ΔG > 0 non espontaneous reaction
4) Assuming the data given correspond to ΔH and ΔS
ΔG = ΔH - T ΔS = 62.4 kJ/mol + T 0.145 kJ / mol * K
=> T = [ΔH - ΔG] / ΔS
ΔG = 0 => T = [ 62.4 kJ/mol - 0 ] / 0.145 kJ/mol*K = 430.34K
This is, at 430.34 K the reaction will be at equilibrium, at T > 430.34 the reaction will be spontaneous, and at T < 430.4K the reaction will not occur spontaneously.
<h2>Please mark me as brainliest please yaa!!!^_^</h2>
Missing table!! write the elements with the first letter of the symbol with Upper Caps letters!!!
http://www.chemeddl.org/services/moodle/media/QBank/GenChem/Tables/EStandardTable.htm
<span>Ni2+ +Pb(s) → Ni(s) + Pb2+
</span>The potential of the oxidation of Pb(s) --> Pb2+(aq) is 0.126 V
The potential of the reduction go Ni2+(aq) --> Ni(s) is -0.25 V
<span>Add the two together and the potential for the reaction is -0.124 V (NO SPONTANEOUS THE SIGN IS NEGATIVE)
</span><span>au3+ + al(s) → au(s) + al3+Au3+(aq) -> Au(s) +1.5 VAl -> Al3+ +1.66VV= 3.16 (SPONTANEOUS THE SIGN OF THE PONTENTIAL IS POSITIVE)</span><span>Sr2+ + Sn(s) → Sr(s) + Sn2+
</span>
Sr2+(aq) + 2 e– <span> Sr(s) V= -2.89V
</span>Sn -> Sn2+ V= 0.14 V
V= -2.75 V (no spontaneous)
<span>Fe2+ + Cu(s) → Fe(s) + Cu2+
</span>Fe2+(aq) + 2 e–<span> </span><span> Fe(s) V= -0.44 V
</span>Cu -> C2+ V = - 0.337V
V= - 0.777V (no spontaneous)