Matter either loses or absorbs energy when it changes from one state to another. For example, when matter changes from a liquid to a solid, it loses energy. The opposite happens when matter changes from a solid to a liquid. For a solid to change to a liquid, matter must absorb energy from its surroundings.
The force ratio of a machine is 4 and it velocity ratio is 4 means that the load moved is four times the effort applied and the distance moved by the effort is five times the distance moved by the load at the same time interval.
Please mark as brainliest
Answer: F = 1235 N
Explanation: Newton's Second Law of Motion describes the effect of mass and net force upon acceleration: 
Acceleration is the change of velocity in a period of time: 
Velocity of the car is in km/h. Transforming it in m/s:

v = 13 m/s
At the moment the car decelerates, acceleration is
a = 65 m/s²
Then, force will be

= 1235 N
The horizontal net force the straps of the restraint chair exerted on the child to hold her is 1235 newtons.
We will make the comparison between each of the sizes against the known wavelengths.
In the case of the <em>hydrogen atom</em>, we know that this is equivalent to
m on average, which corresponds to the wavelength corresponding to X-rays.
In the case of the <em>Virus</em> we know that it is oscillating in a size of 30nm to 200 nm, so the size of the virus is equivalent to the range of the wavelength of an ultraviolet ray.
In the case of <em>height</em>, it fluctuates in a person around
to
m, which falls to the wavelength of a radio wave.
Well you of course have different kinetic energies with the two speeds.
Kinetic energy = (1/2)*mass*velocity^2
The vehicle's mass is the same in both cases, so we can ignore that as well as 1/2 since it's a constant.
So we have (30)^2 vs (60^2)
which is 900 vs 3600
So having 60 mph compared to 30 mph is 4 times the kinetic energy.