Answer:
S= 1.40x10⁻⁵mol/L
Explanation:
The Henry's Law is given by the next expression:
(1)
<em>where S: is the solubility or concentration of Ar in water,
: is Henry's law constant and p: is the pressure of the Ar </em>
<u>Since the argon is 0.93%, we need to multiply the equation (1) by this percent:</u>
Therefore, the argon solubility in water is 1.40x10⁻⁵mol/L.
Have a nice day!
The amount of power change if less work is done in more time"then the amount of power will decrease".
<u>Option: B</u>
<u>Explanation:</u>
The rate of performing any work or activity by transferring amount of energy per unit time is understood as power. The unit of power is watt
Here this equation showcase that power is directly proportional to the work but dependent upon time as time is inversely proportional to the power i.e as time increases power decreases and vice versa.
This can be understood from an instance, on moving a load up a flight of stairs, the similar amount of work is done, no matter how heavy but when the work is done in a shorter period of time more power is required.
-- Equations #2 and #6 are both the same equation,
and are both correct.
-- If you divide each side by 'wavelength', you get Equation #4,
which is also correct.
-- If you divide each side by 'frequency', you get Equation #3,
which is also correct.
With some work, you can rearrange this one and use it to calculate
frequency.
Summary:
-- Equations #2, #3, #4, and #6 are all correct statements,
and can be used to find frequency.
-- Equations #1 and #5 are incorrect statements.
The Earth’s average orbital speed expressed in kilometers per hours is 107225.5 Km/hr and the mass of the sun is 2.58 x
Kg
<h3>
Relationship between Linear and angular speed</h3>
Linear speed is the product of angular speed and the maximum displacement of the particle. That is,
V = Wr
Where
Given that the earth orbits the sun at an average circular radius of about 149.60 million kilometers every 365.26 Earth days.
a) To determine the Earth’s average orbital speed, we will make use of the below formula to calculate angular speed
W = 2
/T
W = (2 x 3.143) / (365.26 x 24)
W = 6.283 / 876624
W = 7.2 x
Rad/hr
The Earth’s average orbital speed V = Wr
V = 7.2 x
x 149.6 x 
V = 107225.5 kilometers per hours.
b) Based on the information given in this question, to calculate the approximate mass of the Sun, we will use Kepler's 3rd law
M = (4
) / G
M = (4 x 9.8696 x 3.35 x
) / (6.67 x
x 7.68 x
<em>)</em>
<em>M = 1.32 x </em>
/ 51.226
M = 2.58 x
Kg
Therefore, the Earth’s average orbital speed expressed in kilometers per hours is 107225.5 Km/hr and the mass of the sun is 2.58 x
Kg
Learn more about Orbital Speed here: brainly.com/question/22247460
#SPJ1