Answer:
In a chemical reaction, there is a change in the composition of the substances in question; in a physical change there is a difference in the appearance, smell, or simple display of a sample of matter without a change in composition. Although we call them physical "reactions," no reaction is actually occurring.
Answer:
Explanation has been given below.
Explanation:
- Chloroform has three polar C-Cl bonds. Methylene chloride has two polar C-Cl bonds. So it is expected that chloroform should be more polar and posses higher dipole moment than methylene chloride.
- Two factors are liable for the opposite trend observed in dipole moments of methylene chloride and chloroform.
- First one is the number of hyperconjugative hydrogen atoms present in a molecule. Hyperconjugation occurs with vacant d-orbital of Cl atom. Hyperconjugation amplifies charge separation in a molecule resulting higher dipole moment.
- Methylene chloride has two hyperconjugative hydrogen atoms and chloroform has one hyperconjugative hydrogen atom.Therefore methylene chloride should have higher charge separation as compared to chloroform.
- Second one is induction of opposite polarity in a C-Cl bond by another C-Cl bond in a molecule. Higher the opposite induction of polarity, lower the charge separation in a molecule and hence lower the dipole moment of a molecule.
- Chloroform has three C-Cl bonds and methylene chloride has two C-Cl bonds. Therefore opposite induction is higher for chloroform resulting it's lower dipole moment.
Answer:
orbits
Explanation:
An orbital is a region of space where there is a high probability of finding an electron.
Answer:
see below
Explanation:
1. Predicting products (double replacement): ab + cd ---> ad + cb
KNO₃(aq) + Fe(OH)₃(s)
2. balance the equation
3KOH (aq) + Fe(NO3)₃ (aq) ---> 3KNO₃(aq) + Fe(OH)₃(s)
3. I don't know if you need this but ionic equation: only aqueous things get split into ions; gas, liquid, and solids stay together
3K⁺(aq) + 3(OH)⁻(aq) + Fe³⁺(aq) + 3NO₃⁻(aq) ---> 3K ⁺(aq) + 3NO₃⁻(aq) + Fe(OH)₃(s)
removing things on both product and reactant side
3(OH)⁻(aq) + Fe³⁺(aq) --->Fe(OH)₃(s)